4,397 research outputs found

    A novel haptic model and environment for maxillofacial surgical operation planning and manipulation

    Get PDF
    This paper presents a practical method and a new haptic model to support manipulations of bones and their segments during the planning of a surgical operation in a virtual environment using a haptic interface. To perform an effective dental surgery it is important to have all the operation related information of the patient available beforehand in order to plan the operation and avoid any complications. A haptic interface with a virtual and accurate patient model to support the planning of bone cuts is therefore critical, useful and necessary for the surgeons. The system proposed uses DICOM images taken from a digital tomography scanner and creates a mesh model of the filtered skull, from which the jaw bone can be isolated for further use. A novel solution for cutting the bones has been developed and it uses the haptic tool to determine and define the bone-cutting plane in the bone, and this new approach creates three new meshes of the original model. Using this approach the computational power is optimized and a real time feedback can be achieved during all bone manipulations. During the movement of the mesh cutting, a novel friction profile is predefined in the haptical system to simulate the force feedback feel of different densities in the bone

    NOViSE: a virtual natural orifice transluminal endoscopic surgery simulator

    Get PDF
    Purpose: Natural Orifice Transluminal Endoscopic Surgery (NOTES) is a novel technique in minimally invasive surgery whereby a flexible endoscope is inserted via a natural orifice to gain access to the abdominal cavity, leaving no external scars. This innovative use of flexible endoscopy creates many new challenges and is associated with a steep learning curve for clinicians. Methods: We developed NOViSE - the first force-feedback enabled virtual reality simulator for NOTES training supporting a flexible endoscope. The haptic device is custom built and the behaviour of the virtual flexible endoscope is based on an established theoretical framework – the Cosserat Theory of Elastic Rods. Results: We present the application of NOViSE to the simulation of a hybrid trans-gastric cholecystectomy procedure. Preliminary results of face, content and construct validation have previously shown that NOViSE delivers the required level of realism for training of endoscopic manipulation skills specific to NOTES Conclusions: VR simulation of NOTES procedures can contribute to surgical training and improve the educational experience without putting patients at risk, raising ethical issues or requiring expensive animal or cadaver facilities. In the context of an experimental technique, NOViSE could potentially facilitate NOTES development and contribute to its wider use by keeping practitioners up to date with this novel surgical technique. NOViSE is a first prototype and the initial results indicate that it provides promising foundations for further development

    Combining physical constraints with geometric constraint-based modeling for virtual assembly

    Get PDF
    The research presented in this dissertation aims to create a virtual assembly environment capable of simulating the constant and subtle interactions (hand-part, part-part) that occur during manual assembly, and providing appropriate feedback to the user in real-time. A virtual assembly system called SHARP System for Haptic Assembly and Realistic Prototyping is created, which utilizes simulated physical constraints for part placement during assembly.;The first approach taken in this research attempt utilized Voxmap Point Shell (VPS) software for implementing collision detection and physics-based modeling in SHARP. A volumetric approach, where complex CAD models were represented by numerous small cubic-voxel elements was used to obtain fast physics update rates (500--1000 Hz). A novel dual-handed haptic interface was developed and integrated into the system allowing the user to simultaneously manipulate parts with both hands. However, coarse model approximations used for collision detection and physics-based modeling only allowed assembly when minimum clearance was limited to ∼8-10%.;To provide a solution to the low clearance assembly problem, the second effort focused on importing accurate parametric CAD data (B-Rep) models into SHARP. These accurate B-Rep representations are used for collision detection as well as for simulating physical contacts more accurately. A new hybrid approach is presented, which combines the simulated physical constraints with geometric constraints which can be defined at runtime. Different case studies are used to identify the suitable combination of methods (collision detection, physical constraints, geometric constraints) capable of best simulating intricate interactions and environment behavior during manual assembly. An innovative automatic constraint recognition algorithm is created and integrated into SHARP. The feature-based approach utilized for the algorithm design, facilitates faster identification of potential geometric constraints that need to be defined. This approach results in optimized system performance while providing a more natural user experience for assembly

    Virtual reality for assembly methods prototyping: a review

    Get PDF
    Assembly planning and evaluation is an important component of the product design process in which details about how parts of a new product will be put together are formalized. A well designed assembly process should take into account various factors such as optimum assembly time and sequence, tooling and fixture requirements, ergonomics, operator safety, and accessibility, among others. Existing computer-based tools to support virtual assembly either concentrate solely on representation of the geometry of parts and fixtures and evaluation of clearances and tolerances or use simulated human mannequins to approximate human interaction in the assembly process. Virtual reality technology has the potential to support integration of natural human motions into the computer aided assembly planning environment (Ritchie et al. in Proc I MECH E Part B J Eng 213(5):461–474, 1999). This would allow evaluations of an assembler’s ability to manipulate and assemble parts and result in reduced time and cost for product design. This paper provides a review of the research in virtual assembly and categorizes the different approaches. Finally, critical requirements and directions for future research are presented

    Inverse problem of photoelastic fringe mapping using neural networks

    Get PDF
    This paper presents an enhanced technique for inverse analysis of photoelastic fringes using neural networks to determine the applied load. The technique may be useful in whole-field analysis of photoelastic images obtained due to external loading, which may find application in a variety of specialized areas including robotics and biomedical engineering. The presented technique is easy to implement, does not require much computation and can cope well within slight experimental variations. The technique requires image acquisition, filtering and data extraction, which is then fed to the neural network to provide load as output. This technique can be efficiently implemented for determining the applied load in applications where repeated loading is one of the main considerations. The results presented in this paper demonstrate the novelty of this technique to solve the inverse problem from direct image data. It has been shown that the presented technique offers better result for the inverse photoelastic problems than previously published works

    Expressive cutting, deforming, and painting of three-dimensional digital shapes through asymmetric bimanual haptic manipulation

    Get PDF
    Practitioners of the geosciences, design, and engineering disciplines communicate complex ideas about shape by manipulating three-dimensional digital objects to match their conceptual model. However, the two-dimensional control interfaces, common in software applications, create a disconnect to three-dimensional manipulations. This research examines cutting, deforming, and painting manipulations for expressive three-dimensional interaction. It presents a cutting algorithm specialized for planning cuts on a triangle mesh, the extension of a deformation algorithm for inhomogeneous meshes, and the definition of inhomogeneous meshes by painting into a deformation property map. This thesis explores two-handed interactions with haptic force-feedback where each hand can fulfill an asymmetric bimanual role. These digital shape manipulations demonstrate a step toward the creation of expressive three-dimensional interactions

    Recent Advancements in Augmented Reality for Robotic Applications: A Survey

    Get PDF
    Robots are expanding from industrial applications to daily life, in areas such as medical robotics, rehabilitative robotics, social robotics, and mobile/aerial robotics systems. In recent years, augmented reality (AR) has been integrated into many robotic applications, including medical, industrial, human–robot interactions, and collaboration scenarios. In this work, AR for both medical and industrial robot applications is reviewed and summarized. For medical robot applications, we investigated the integration of AR in (1) preoperative and surgical task planning; (2) image-guided robotic surgery; (3) surgical training and simulation; and (4) telesurgery. AR for industrial scenarios is reviewed in (1) human–robot interactions and collaborations; (2) path planning and task allocation; (3) training and simulation; and (4) teleoperation control/assistance. In addition, the limitations and challenges are discussed. Overall, this article serves as a valuable resource for working in the field of AR and robotic research, offering insights into the recent state of the art and prospects for improvement
    corecore