4 research outputs found

    An improved neural network model for the two-page crossing number problem

    Get PDF
    The simplest graph drawing method is that of putting the vertices of a graph on a line and drawing the edges as half-circles either above or below the line. Such drawings are called 2-page book drawings. The smallest number of crossings over all 2-page drawings of a graph G is called the 2-page crossing number of G. Cimikowski and Shope have solved the 2-page crossing number problem for an n-vertex and m-edge graph by using a Hopfield network with 2m neurons. We present here an improved Hopfield modelwith m neurons. The new model achieves much better performance in the quality of solutions and is more efficient than the model of Cimikowski and Shope for all graphs tested. The parallel time complexity of the algorithm, without considering the crossing number calculations, is O(m), for the new Hopfield model with m processors clearly outperforming the previous algorithm

    Experimental Evaluation of Book Drawing Algorithms

    Full text link
    A kk-page book drawing of a graph G=(V,E)G=(V,E) consists of a linear ordering of its vertices along a spine and an assignment of each edge to one of the kk pages, which are half-planes bounded by the spine. In a book drawing, two edges cross if and only if they are assigned to the same page and their vertices alternate along the spine. Crossing minimization in a kk-page book drawing is NP-hard, yet book drawings have multiple applications in visualization and beyond. Therefore several heuristic book drawing algorithms exist, but there is no broader comparative study on their relative performance. In this paper, we propose a comprehensive benchmark set of challenging graph classes for book drawing algorithms and provide an extensive experimental study of the performance of existing book drawing algorithms.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    An Improved Neural Network Model for the Two-Page Crossing Number Problem

    No full text
    corecore