7,395 research outputs found

    On the 2-part of the Birch-Swinnerton-Dyer conjecture for elliptic curves with complex multiplication

    Full text link
    Given an elliptic curve E over Q with complex multiplication having good reduction at 2, we investigate the 2-adic valuation of the algebraic part of the L-value at 1 for a family of quadratic twists. In particular, we prove a lower bound for this valuation in terms of the Tamagawa number in a form predicted by the conjecture of Birch and Swinnerton-Dyer

    Easy scalar decompositions for efficient scalar multiplication on elliptic curves and genus 2 Jacobians

    Get PDF
    The first step in elliptic curve scalar multiplication algorithms based on scalar decompositions using efficient endomorphisms-including Gallant-Lambert-Vanstone (GLV) and Galbraith-Lin-Scott (GLS) multiplication, as well as higher-dimensional and higher-genus constructions-is to produce a short basis of a certain integer lattice involving the eigenvalues of the endomorphisms. The shorter the basis vectors, the shorter the decomposed scalar coefficients, and the faster the resulting scalar multiplication. Typically, knowledge of the eigenvalues allows us to write down a long basis, which we then reduce using the Euclidean algorithm, Gauss reduction, LLL, or even a more specialized algorithm. In this work, we use elementary facts about quadratic rings to immediately write down a short basis of the lattice for the GLV, GLS, GLV+GLS, and Q-curve constructions on elliptic curves, and for genus 2 real multiplication constructions. We do not pretend that this represents a significant optimization in scalar multiplication, since the lattice reduction step is always an offline precomputation---but it does give a better insight into the structure of scalar decompositions. In any case, it is always more convenient to use a ready-made short basis than it is to compute a new one

    Explicit lower bounds on the modular degree of an elliptic curve

    Get PDF
    We derive an explicit zero-free region for symmetric square L-functions of elliptic curves, and use this to derive an explicit lower bound for the modular degree of rational elliptic curves. The techniques are similar to those used in the classical derivation of zero-free regions for Dirichlet L-functions, but here, due to the work of Goldfield-Hoffstein-Lieman, we know that there are no Siegel zeros, which leads to a strengthened result

    Finding ECM-friendly curves through a study of Galois properties

    Get PDF
    In this paper we prove some divisibility properties of the cardinality of elliptic curves modulo primes. These proofs explain the good behavior of certain parameters when using Montgomery or Edwards curves in the setting of the elliptic curve method (ECM) for integer factorization. The ideas of the proofs help us to find new families of elliptic curves with good division properties which increase the success probability of ECM
    corecore