5,449 research outputs found

    Improving Sonar Image Patch Matching via Deep Learning

    Full text link
    Matching sonar images with high accuracy has been a problem for a long time, as sonar images are inherently hard to model due to reflections, noise and viewpoint dependence. Autonomous Underwater Vehicles require good sonar image matching capabilities for tasks such as tracking, simultaneous localization and mapping (SLAM) and some cases of object detection/recognition. We propose the use of Convolutional Neural Networks (CNN) to learn a matching function that can be trained from labeled sonar data, after pre-processing to generate matching and non-matching pairs. In a dataset of 39K training pairs, we obtain 0.91 Area under the ROC Curve (AUC) for a CNN that outputs a binary classification matching decision, and 0.89 AUC for another CNN that outputs a matching score. In comparison, classical keypoint matching methods like SIFT, SURF, ORB and AKAZE obtain AUC 0.61 to 0.68. Alternative learning methods obtain similar results, with a Random Forest Classifier obtaining AUC 0.79, and a Support Vector Machine resulting in AUC 0.66.Comment: Author versio

    Towards autonomous localization and mapping of AUVs: a survey

    Get PDF
    Purpose The main purpose of this paper is to investigate two key elements of localization and mapping of Autonomous Underwater Vehicle (AUV), i.e. to overview various sensors and algorithms used for underwater localization and mapping, and to make suggestions for future research. Design/methodology/approach The authors first review various sensors and algorithms used for AUVs in the terms of basic working principle, characters, their advantages and disadvantages. The statistical analysis is carried out by studying 35 AUV platforms according to the application circumstances of sensors and algorithms. Findings As real-world applications have different requirements and specifications, it is necessary to select the most appropriate one by balancing various factors such as accuracy, cost, size, etc. Although highly accurate localization and mapping in an underwater environment is very difficult, more and more accurate and robust navigation solutions will be achieved with the development of both sensors and algorithms. Research limitations/implications This paper provides an overview of the state of art underwater localisation and mapping algorithms and systems. No experiments are conducted for verification. Practical implications The paper will give readers a clear guideline to find suitable underwater localisation and mapping algorithms and systems for their practical applications in hand. Social implications There is a wide range of audiences who will benefit from reading this comprehensive survey of autonomous localisation and mapping of UAVs. Originality/value The paper will provide useful information and suggestions to research students, engineers and scientists who work in the field of autonomous underwater vehicles

    Toward autonomous exploration in confined underwater environments

    Get PDF
    Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Journal of Field Robotics 33 (2016): 994-1012, doi:10.1002/rob.21640.In this field note we detail the operations and discuss the results of an experiment conducted in the unstructured environment of an underwater cave complex, using an autonomous underwater vehicle (AUV). For this experiment the AUV was equipped with two acoustic sonar to simultaneously map the caves’ horizontal and vertical surfaces. Although the caves’ spatial complexity required AUV guidance by a diver, this field deployment successfully demonstrates a scan matching algorithm in a simultaneous localization and mapping (SLAM) framework that significantly reduces and bounds the localization error for fully autonomous navigation. These methods are generalizable for AUV exploration in confined underwater environments where surfacing or pre-deployment of localization equipment are not feasible and may provide a useful step toward AUV utilization as a response tool in confined underwater disaster areas.This research work was partially sponsored by the EU FP7-Projects: Tecniospring- Marie Curie (TECSPR13-1-0052), MORPH (FP7-ICT-2011-7-288704), Eurofleets2 (FP7-INF-2012-312762), and the National Science Foundation (OCE-0955674)

    Autonomous navigation with constrained consistency for C-Ranger

    Get PDF
    Autonomous underwater vehicles (AUVs) have become the most widely used tools for undertaking complex exploration tasks in marine environments. Their synthetic ability to carry out localization autonomously and build an environmental map concurrently, in other words, simultaneous localization and mapping (SLAM), are considered to be pivotal requirements for AUVs to have truly autonomous navigation. However, the consistency problem of the SLAM system has been greatly ignored during the past decades. In this paper, a consistency constrained extended Kalman filter (EKF) SLAM algorithm, applying the idea of local consistency, is proposed and applied to the autonomous navigation of the C-Ranger AUV, which is developed as our experimental platform. The concept of local consistency (LC) is introduced after an explicit theoretical derivation of the EKF-SLAM system. Then, we present a locally consistency-constrained EKF-SLAM design, LC-EKF, in which the landmark estimates used for linearization are fixed at the beginning of each local time period, rather than evaluated at the latest landmark estimates. Finally, our proposed LC-EKF algorithm is experimentally verified, both in simulations and sea trials. The experimental results show that the LC-EKF performs well with regard to consistency, accuracy and computational efficiency

    Large Area 3-D Reconstructions from Underwater Optical Surveys

    Full text link
    Robotic underwater vehicles are regularly performing vast optical surveys of the ocean floor. Scientists value these surveys since optical images offer high levels of detail and are easily interpreted by humans. Unfortunately, the coverage of a single image is limited by absorption and backscatter while what is generally desired is an overall view of the survey area. Recent works on underwater mosaics assume planar scenes and are applicable only to situations without much relief. We present a complete and validated system for processing optical images acquired from an underwater robotic vehicle to form a 3D reconstruction of the ocean floor. Our approach is designed for the most general conditions of wide-baseline imagery (low overlap and presence of significant 3D structure) and scales to hundreds or thousands of images. We only assume a calibrated camera system and a vehicle with uncertain and possibly drifting pose information (e.g., a compass, depth sensor, and a Doppler velocity log). Our approach is based on a combination of techniques from computer vision, photogrammetry, and robotics. We use a local to global approach to structure from motion, aided by the navigation sensors on the vehicle to generate 3D sub-maps. These sub-maps are then placed in a common reference frame that is refined by matching overlapping sub-maps. The final stage of processing is a bundle adjustment that provides the 3D structure, camera poses, and uncertainty estimates in a consistent reference frame. We present results with ground truth for structure as well as results from an oceanographic survey over a coral reef.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86036/1/opizarro-12.pd

    A Comparative Study of Feature Detection Methods for AUV Localization

    Get PDF
    Underwater localization is a difficult task when it comes to making the system autonomous due to the unpredictable environment. The fact that radio signals such as GPS cannot be transmitted through water makes autonomous movement and localization underwater even more challenging. One specific method that is widely used for autonomous underwater navigation applications is Simultaneous Localization and Mapping (SLAM), a technique in which a map is created and updated while localizing the vehicle within the map. In SLAM, feature detection is used in landmark extraction and data association by examining each pixel and differentiating landmarks pixels from those of the background. Previous research on the performance of different feature detection methods have been done in environments such as cisterns and caverns where the effects of the ocean are reduced. Our objective, however, is to achieves robust localization in the open ocean environment of the Cal Poly pier. This thesis performs a comparative study between different feature detection methods including Scale Invariant Feature Transform (SIFT), Speeded-Up Robust Features (SURF), and Oriented FAST and Rotated BRIEF (ORB) on different sensors. We evaluate the feature detection and matching performance of these algorithms in a simulated open-ocean environment

    An Underwater SLAM System using Sonar, Visual, Inertial, and Depth Sensor

    Full text link
    This paper presents a novel tightly-coupled keyframe-based Simultaneous Localization and Mapping (SLAM) system with loop-closing and relocalization capabilities targeted for the underwater domain. Our previous work, SVIn, augmented the state-of-the-art visual-inertial state estimation package OKVIS to accommodate acoustic data from sonar in a non-linear optimization-based framework. This paper addresses drift and loss of localization -- one of the main problems affecting other packages in underwater domain -- by providing the following main contributions: a robust initialization method to refine scale using depth measurements, a fast preprocessing step to enhance the image quality, and a real-time loop-closing and relocalization method using bag of words (BoW). An additional contribution is the addition of depth measurements from a pressure sensor to the tightly-coupled optimization formulation. Experimental results on datasets collected with a custom-made underwater sensor suite and an autonomous underwater vehicle from challenging underwater environments with poor visibility demonstrate performance never achieved before in terms of accuracy and robustness
    • …
    corecore