156,226 research outputs found

    Improved bounds for the crossing numbers of K_m,n and K_n

    Full text link
    It has been long--conjectured that the crossing number cr(K_m,n) of the complete bipartite graph K_m,n equals the Zarankiewicz Number Z(m,n):= floor((m-1)/2) floor(m/2) floor((n-1)/2) floor(n/2). Another long--standing conjecture states that the crossing number cr(K_n) of the complete graph K_n equals Z(n):= floor(n/2) floor((n-1)/2) floor((n-2)/2) floor((n-3)/2)/4. In this paper we show the following improved bounds on the asymptotic ratios of these crossing numbers and their conjectured values: (i) for each fixed m >= 9, lim_{n->infty} cr(K_m,n)/Z(m,n) >= 0.83m/(m-1); (ii) lim_{n->infty} cr(K_n,n)/Z(n,n) >= 0.83; and (iii) lim_{n->infty} cr(K_n)/Z(n) >= 0.83. The previous best known lower bounds were 0.8m/(m-1), 0.8, and 0.8, respectively. These improved bounds are obtained as a consequence of the new bound cr(K_{7,n}) >= 2.1796n^2 - 4.5n. To obtain this improved lower bound for cr(K_{7,n}), we use some elementary topological facts on drawings of K_{2,7} to set up a quadratic program on 6! variables whose minimum p satisfies cr(K_{7,n}) >= (p/2)n^2 - 4.5n, and then use state--of--the--art quadratic optimization techniques combined with a bit of invariant theory of permutation groups to show that p >= 4.3593.Comment: LaTeX, 18 pages, 2 figure

    On kk-Gons and kk-Holes in Point Sets

    Get PDF
    We consider a variation of the classical Erd\H{o}s-Szekeres problems on the existence and number of convex kk-gons and kk-holes (empty kk-gons) in a set of nn points in the plane. Allowing the kk-gons to be non-convex, we show bounds and structural results on maximizing and minimizing their numbers. Most noteworthy, for any kk and sufficiently large nn, we give a quadratic lower bound for the number of kk-holes, and show that this number is maximized by sets in convex position

    Drawing Binary Tanglegrams: An Experimental Evaluation

    Full text link
    A binary tanglegram is a pair of binary trees whose leaf sets are in one-to-one correspondence; matching leaves are connected by inter-tree edges. For applications, for example in phylogenetics or software engineering, it is required that the individual trees are drawn crossing-free. A natural optimization problem, denoted tanglegram layout problem, is thus to minimize the number of crossings between inter-tree edges. The tanglegram layout problem is NP-hard and is currently considered both in application domains and theory. In this paper we present an experimental comparison of a recursive algorithm of Buchin et al., our variant of their algorithm, the algorithm hierarchy sort of Holten and van Wijk, and an integer quadratic program that yields optimal solutions.Comment: see http://www.siam.org/proceedings/alenex/2009/alx09_011_nollenburgm.pd

    The crossing number of locally twisted cubes

    Full text link
    The {\it crossing number} of a graph GG is the minimum number of pairwise intersections of edges in a drawing of GG. Motivated by the recent work [Faria, L., Figueiredo, C.M.H. de, Sykora, O., Vrt'o, I.: An improved upper bound on the crossing number of the hypercube. J. Graph Theory {\bf 59}, 145--161 (2008)] which solves the upper bound conjecture on the crossing number of nn-dimensional hypercube proposed by Erd\H{o}s and Guy, we give upper and lower bounds of the crossing number of locally twisted cube, which is one of variants of hypercube.Comment: 17 pages, 12 figure
    • …
    corecore