913 research outputs found

    Deep Reinforcement Learning Based Optimal Energy Management of Multi-energy Microgrids with Uncertainties

    Full text link
    Multi-energy microgrid (MEMG) offers an effective approach to deal with energy demand diversification and new energy consumption on the consumer side. In MEMG, it is critical to deploy an energy management system (EMS) for efficient utilization of energy and reliable operation of the system. To help EMS formulate optimal dispatching schemes, a deep reinforcement learning (DRL)-based MEMG energy management scheme with renewable energy source (RES) uncertainty is proposed in this paper. To accurately describe the operating state of the MEMG, the off-design performance model of energy conversion devices is considered in scheduling. The nonlinear optimal dispatching model is expressed as a Markov decision process (MDP) and is then addressed by the twin delayed deep deterministic policy gradient (TD3) algorithm. In addition, to accurately describe the uncertainty of RES, the conditional-least squares generative adversarial networks (C-LSGANs) method based on RES forecast power is proposed to construct the scenarios set of RES power generation. The generated data of RES is used for scheduling to obtain caps and floors for the purchase of electricity and natural gas. Based on this, the superior energy supply sector can formulate solutions in advance to tackle the uncertainty of RES. Finally, the simulation analysis demonstrates the validity and superiority of the method.Comment: Accepted by CSEE Journal of Power and Energy System

    Analysis of physiological signals using machine learning methods

    Get PDF
    Technological advances in data collection enable scientists to suggest novel approaches, such as Machine Learning algorithms, to process and make sense of this information. However, during this process of collection, data loss and damage can occur for reasons such as faulty device sensors or miscommunication. In the context of time-series data such as multi-channel bio-signals, there is a possibility of losing a whole channel. In such cases, existing research suggests imputing the missing parts when the majority of data is available. One way of understanding and classifying complex signals is by using deep neural networks. The hyper-parameters of such models have been optimised using the process of back propagation. Over time, improvements have been suggested to enhance this algorithm. However, an essential drawback of the back propagation can be the sensitivity to noisy data. This thesis proposes two novel approaches to address the missing data challenge and back propagation drawbacks: First, suggesting a gradient-free model in order to discover the optimal hyper-parameters of a deep neural network. The complexity of deep networks and high-dimensional optimisation parameters presents challenges to find a suitable network structure and hyper-parameter configuration. This thesis proposes the use of a minimalist swarm optimiser, Dispersive Flies Optimisation(DFO), to enable the selected model to achieve better results in comparison with the traditional back propagation algorithm in certain conditions such as limited number of training samples. The DFO algorithm offers a robust search process for finding and determining the hyper-parameter configurations. Second, imputing whole missing bio-signals within a multi-channel sample. This approach comprises two experiments, namely the two-signal and five-signal imputation models. The first experiment attempts to implement and evaluate the performance of a model mapping bio-signals from A toB and vice versa. Conceptually, this is an extension to transfer learning using CycleGenerative Adversarial Networks (CycleGANs). The second experiment attempts to suggest a mechanism imputing missing signals in instances where multiple data channels are available for each sample. The capability to map to a target signal through multiple source domains achieves a more accurate estimate for the target domain. The results of the experiments performed indicate that in certain circumstances, such as having a limited number of samples, finding the optimal hyper-parameters of a neural network using gradient-free algorithms outperforms traditional gradient-based algorithms, leading to more accurate classification results. In addition, Generative Adversarial Networks could be used to impute the missing data channels in multi-channel bio-signals, and the generated data used for further analysis and classification tasks

    Trustworthy Edge Machine Learning: A Survey

    Full text link
    The convergence of Edge Computing (EC) and Machine Learning (ML), known as Edge Machine Learning (EML), has become a highly regarded research area by utilizing distributed network resources to perform joint training and inference in a cooperative manner. However, EML faces various challenges due to resource constraints, heterogeneous network environments, and diverse service requirements of different applications, which together affect the trustworthiness of EML in the eyes of its stakeholders. This survey provides a comprehensive summary of definitions, attributes, frameworks, techniques, and solutions for trustworthy EML. Specifically, we first emphasize the importance of trustworthy EML within the context of Sixth-Generation (6G) networks. We then discuss the necessity of trustworthiness from the perspective of challenges encountered during deployment and real-world application scenarios. Subsequently, we provide a preliminary definition of trustworthy EML and explore its key attributes. Following this, we introduce fundamental frameworks and enabling technologies for trustworthy EML systems, and provide an in-depth literature review of the latest solutions to enhance trustworthiness of EML. Finally, we discuss corresponding research challenges and open issues.Comment: 27 pages, 7 figures, 10 table
    • …
    corecore