19 research outputs found

    A low-cost approach for determining the impact of Functional Approximation

    Get PDF
    Approximate Computing (AxC) trades off between the level of accuracy required by the user and the actual precision provided by the computing system to achieve several optimizations such as performance improvement, energy, and area reduction etc.. Several AxC techniques have been proposed so far in the literature. They work at different abstraction level and propose both hardware and software implementations. The common issue of all existing approaches is the lack of a methodology to estimate the impact of a given AxC technique on the application-level accuracy. In this paper, we propose a probabilistic approach to predict the relation between component-level functional approximation and application-level accuracy. Experimental results on a set of benchmark application show that the proposed approach is able to estimate the approximation error with good accuracy and very low computation time

    Cutset Sampling for Bayesian Networks

    Full text link
    The paper presents a new sampling methodology for Bayesian networks that samples only a subset of variables and applies exact inference to the rest. Cutset sampling is a network structure-exploiting application of the Rao-Blackwellisation principle to sampling in Bayesian networks. It improves convergence by exploiting memory-based inference algorithms. It can also be viewed as an anytime approximation of the exact cutset-conditioning algorithm developed by Pearl. Cutset sampling can be implemented efficiently when the sampled variables constitute a loop-cutset of the Bayesian network and, more generally, when the induced width of the networks graph conditioned on the observed sampled variables is bounded by a constant w. We demonstrate empirically the benefit of this scheme on a range of benchmarks

    Entropy and the Kullback-Leibler Divergence for Bayesian Networks: Computational Complexity and Efficient Implementation

    Full text link
    Bayesian networks (BNs) are a foundational model in machine learning and causal inference. Their graphical structure can handle high-dimensional problems, divide them into a sparse collection of smaller ones, underlies Judea Pearl's causality, and determines their explainability and interpretability. Despite their popularity, there are almost no resources in the literature on how to compute Shannon's entropy and the Kullback-Leibler (KL) divergence for BNs under their most common distributional assumptions. In this paper, we provide computationally efficient algorithms for both by leveraging BNs' graphical structure, and we illustrate them with a complete set of numerical examples. In the process, we show it is possible to reduce the computational complexity of KL from cubic to quadratic for Gaussian BNs.Comment: 32 pages, 4 figure

    SyRA: early system reliability analysis for cross-layer soft errors resilience in memory arrays of microprocessor systems

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Cross-layer reliability is becoming the preferred solution when reliability is a concern in the design of a microprocessor-based system. Nevertheless, deciding how to distribute the error management across the different layers of the system is a very complex task that requires the support of dedicated frameworks for cross-layer reliability analysis. This paper proposes SyRA, a system-level cross-layer early reliability analysis framework for radiation induced soft errors in memory arrays of microprocessor-based systems. The framework exploits a multi-level hybrid Bayesian model to describe the target system and takes advantage of Bayesian inference to estimate different reliability metrics. SyRA implements several mechanisms and features to deal with the complexity of realistic models and implements a complete tool-chain that scales efficiently with the complexity of the system. The simulation time is significantly lower than micro-architecture level or RTL fault-injection experiments with an accuracy high enough to take effective design decisions. To demonstrate the capability of SyRA, we analyzed the reliability of a set of microprocessor-based systems characterized by different microprocessor architectures (i.e., Intel x86, ARM Cortex-A15, ARM Cortex-A9) running both the Linux operating system or bare metal. Each system under analysis executes different software workloads both from benchmark suites and from real applications.Peer ReviewedPostprint (author's final draft
    corecore