5,875 research outputs found

    Pedestrian Attribute Recognition: A Survey

    Full text link
    Recognizing pedestrian attributes is an important task in computer vision community due to it plays an important role in video surveillance. Many algorithms has been proposed to handle this task. The goal of this paper is to review existing works using traditional methods or based on deep learning networks. Firstly, we introduce the background of pedestrian attributes recognition (PAR, for short), including the fundamental concepts of pedestrian attributes and corresponding challenges. Secondly, we introduce existing benchmarks, including popular datasets and evaluation criterion. Thirdly, we analyse the concept of multi-task learning and multi-label learning, and also explain the relations between these two learning algorithms and pedestrian attribute recognition. We also review some popular network architectures which have widely applied in the deep learning community. Fourthly, we analyse popular solutions for this task, such as attributes group, part-based, \emph{etc}. Fifthly, we shown some applications which takes pedestrian attributes into consideration and achieve better performance. Finally, we summarized this paper and give several possible research directions for pedestrian attributes recognition. The project page of this paper can be found from the following website: \url{https://sites.google.com/view/ahu-pedestrianattributes/}.Comment: Check our project page for High Resolution version of this survey: https://sites.google.com/view/ahu-pedestrianattributes

    Soft Biometric Analysis: MultiPerson and RealTime Pedestrian Attribute Recognition in Crowded Urban Environments

    Get PDF
    Traditionally, recognition systems were only based on human hard biometrics. However, the ubiquitous CCTV cameras have raised the desire to analyze human biometrics from far distances, without people attendance in the acquisition process. Highresolution face closeshots are rarely available at far distances such that facebased systems cannot provide reliable results in surveillance applications. Human soft biometrics such as body and clothing attributes are believed to be more effective in analyzing human data collected by security cameras. This thesis contributes to the human soft biometric analysis in uncontrolled environments and mainly focuses on two tasks: Pedestrian Attribute Recognition (PAR) and person reidentification (reid). We first review the literature of both tasks and highlight the history of advancements, recent developments, and the existing benchmarks. PAR and person reid difficulties are due to significant distances between intraclass samples, which originate from variations in several factors such as body pose, illumination, background, occlusion, and data resolution. Recent stateoftheart approaches present endtoend models that can extract discriminative and comprehensive feature representations from people. The correlation between different regions of the body and dealing with limited learning data is also the objective of many recent works. Moreover, class imbalance and correlation between human attributes are specific challenges associated with the PAR problem. We collect a large surveillance dataset to train a novel gender recognition model suitable for uncontrolled environments. We propose a deep residual network that extracts several posewise patches from samples and obtains a comprehensive feature representation. In the next step, we develop a model for multiple attribute recognition at once. Considering the correlation between human semantic attributes and class imbalance, we respectively use a multitask model and a weighted loss function. We also propose a multiplication layer on top of the backbone features extraction layers to exclude the background features from the final representation of samples and draw the attention of the model to the foreground area. We address the problem of person reid by implicitly defining the receptive fields of deep learning classification frameworks. The receptive fields of deep learning models determine the most significant regions of the input data for providing correct decisions. Therefore, we synthesize a set of learning data in which the destructive regions (e.g., background) in each pair of instances are interchanged. A segmentation module determines destructive and useful regions in each sample, and the label of synthesized instances are inherited from the sample that shared the useful regions in the synthesized image. The synthesized learning data are then used in the learning phase and help the model rapidly learn that the identity and background regions are not correlated. Meanwhile, the proposed solution could be seen as a data augmentation approach that fully preserves the label information and is compatible with other data augmentation techniques. When reid methods are learned in scenarios where the target person appears with identical garments in the gallery, the visual appearance of clothes is given the most importance in the final feature representation. Clothbased representations are not reliable in the longterm reid settings as people may change their clothes. Therefore, developing solutions that ignore clothing cues and focus on identityrelevant features are in demand. We transform the original data such that the identityrelevant information of people (e.g., face and body shape) are removed, while the identityunrelated cues (i.e., color and texture of clothes) remain unchanged. A learned model on the synthesized dataset predicts the identityunrelated cues (shortterm features). Therefore, we train a second model coupled with the first model and learns the embeddings of the original data such that the similarity between the embeddings of the original and synthesized data is minimized. This way, the second model predicts based on the identityrelated (longterm) representation of people. To evaluate the performance of the proposed models, we use PAR and person reid datasets, namely BIODI, PETA, RAP, Market1501, MSMTV2, PRCC, LTCC, and MIT and compared our experimental results with stateoftheart methods in the field. In conclusion, the data collected from surveillance cameras have low resolution, such that the extraction of hard biometric features is not possible, and facebased approaches produce poor results. In contrast, soft biometrics are robust to variations in data quality. So, we propose approaches both for PAR and person reid to learn discriminative features from each instance and evaluate our proposed solutions on several publicly available benchmarks.This thesis was prepared at the University of Beria Interior, IT Instituto de Telecomunicações, Soft Computing and Image Analysis Laboratory (SOCIA Lab), Covilhã Delegation, and was submitted to the University of Beira Interior for defense in a public examination session

    Dynamic scene understanding: Pedestrian tracking from aerial devices.

    Get PDF
    Multiple Object Tracking (MOT) is the problem that involves following the trajectory of multiple objects in a sequence, generally a video. Pedestrians are among the most interesting subjects to track and recognize for many purposes such as surveillance, and safety. In the recent years, Unmanned Aerial Vehicles (UAV’s) have been viewed as a viable option for monitoring public areas, as they provide a low-cost method of data collection while covering large and difficult-to-reach areas. In this thesis, we present an online pedestrian tracking and re-identification from aerial devices framework. This framework is based on learning a compact directional statistic distribution (von-Mises-Fisher distribution) for each person ID using a deep convolutional neural network. The distribution characteristics are trained to be invariant to clothes appearances and to transformations. In real world scenarios, during deployment, new pedestrian and objects can appear in the scene and the model should detect them as Out Of Distribution (OOD). Thus, our frameworks also includes an OOD detection adopted from [16] called Virtual Outlier Synthetic (VOS), that detects OOD based on synthesising virtual outlier in the embedding space in an online manner. To validate, analyze and compare our approach, we use a large real benchmark data that contain detection tracking and identity annotations. These targets are captured at different viewing angles, different places, and different times by a ”DJI Phantom 4” drone. We validate the effectiveness of the proposed framework by evaluating their detection, tracking and long term identification performance as well as classification performance between In Distribution (ID) and OOD. We show that the the proposed methods in the framework can learn models that achieve their objectives

    Linking theories, past practices, and archaeological remains of movement through ontological reasoning

    Get PDF
    The amount of information available to archaeologists has grown dramatically during the last ten years. The rapid acquisition of observational data and creation of digital data has played a significant role in this “information explosion”. In this paper, we propose new methods for knowledge creation in studies of movement, designed for the present data-rich research context. Using three case studies, we analyze how researchers have identified, conceptualized, and linked the material traces describing various movement processes in a given region. Then, we explain how we construct ontologies that enable us to explicitly relate material elements, identified in the observed landscape, to the knowledge or theory that explains their role and relationships within the movement process. Combining formal pathway systems and informal movement systems through these three case studies, we argue that these systems are not hierarchically integrated, but rather intertwined. We introduce a new heuristic tool, the “track graph”, to record observed material features in a neutral form which can be employed to reconstruct the trajectories of journeys which follow different movement logics. Finally, we illustrate how the breakdown of implicit conceptual references into explicit, logical chains of reasoning, describing basic entities and their relationships, allows the use of these constituent elements to reconstruct, analyze, and compare movement practices from the bottom up

    Towards Large-Scale Small Object Detection: Survey and Benchmarks

    Full text link
    With the rise of deep convolutional neural networks, object detection has achieved prominent advances in past years. However, such prosperity could not camouflage the unsatisfactory situation of Small Object Detection (SOD), one of the notoriously challenging tasks in computer vision, owing to the poor visual appearance and noisy representation caused by the intrinsic structure of small targets. In addition, large-scale dataset for benchmarking small object detection methods remains a bottleneck. In this paper, we first conduct a thorough review of small object detection. Then, to catalyze the development of SOD, we construct two large-scale Small Object Detection dAtasets (SODA), SODA-D and SODA-A, which focus on the Driving and Aerial scenarios respectively. SODA-D includes 24828 high-quality traffic images and 278433 instances of nine categories. For SODA-A, we harvest 2513 high resolution aerial images and annotate 872069 instances over nine classes. The proposed datasets, as we know, are the first-ever attempt to large-scale benchmarks with a vast collection of exhaustively annotated instances tailored for multi-category SOD. Finally, we evaluate the performance of mainstream methods on SODA. We expect the released benchmarks could facilitate the development of SOD and spawn more breakthroughs in this field. Datasets and codes are available at: \url{https://shaunyuan22.github.io/SODA}
    • …
    corecore