3 research outputs found

    XML stream transformer generation through program composition and dependency analysis

    Get PDF
    AbstractXML stream transformation, which sequentially processes the input XML data on the fly, makes it possible to process large sized data within a limited amount of memory. Though being efficient in memory-use, stream transformation requires stateful programming, which is error-prone and hard to manage.This paper proposes a scheme for generating XML stream transformers. Given an attribute grammar definition of transformation over an XML tree structure, we systematically derive a stream transformer in two steps. First, an attribute grammar definition of the XML stream transformation is inferred by applying a program composition method. Second, a finite state transition machine is constructed through a dependency analysis. Due to the closure property of the program composition method, our scheme also allows modular construction of XML stream transformers.We have implemented a prototype XML stream transformer generator, called altSAX. The experimental results show that the generated transformers are efficient in memory consumption as well as in execution time

    XML stream transformer generation through program composition and dependency analysis

    Get PDF
    AbstractXML stream transformation, which sequentially processes the input XML data on the fly, makes it possible to process large sized data within a limited amount of memory. Though being efficient in memory-use, stream transformation requires stateful programming, which is error-prone and hard to manage.This paper proposes a scheme for generating XML stream transformers. Given an attribute grammar definition of transformation over an XML tree structure, we systematically derive a stream transformer in two steps. First, an attribute grammar definition of the XML stream transformation is inferred by applying a program composition method. Second, a finite state transition machine is constructed through a dependency analysis. Due to the closure property of the program composition method, our scheme also allows modular construction of XML stream transformers.We have implemented a prototype XML stream transformer generator, called altSAX. The experimental results show that the generated transformers are efficient in memory consumption as well as in execution time

    An Implementation Scheme for XML Transformation Languages Through Derivation of Stream Processors

    No full text
    Abstract. We propose a new implementation scheme for XML transformation languages through derivation of stream processors. Most of XML transforma-tion languages are implemented as tree manipulation, where input XML trees are completely stored in memory. It leads to inefficient memory usage in particu-lar when we apply a facile transformation to large-sized inputs. In contrast, XML stream processing can minimize memory usage and execution time since it begins to output the transformation result before reading the whole input. However, it is much harder to program XML stream processors than to specify tree manipula-tions because stream processing frequently requires ‘stateful programming’. This paper proposes an implementation scheme for XML transformation languages, in which we can define an XML transformation as tree manipulation and also we can obtain an XML stream processor automatically. The implementation scheme employs a framework of a composition of attribute grammars.
    corecore