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Abstract

XML stream transformation, which sequentially processes the input XML data on the fly, makes
it possible to process large sized data within a limited amount of memory. Though being efficient in
memory-use, stream transformation requires stateful programming, which is error-prone and hard to
manage.

This paper proposes a scheme for generating XML stream transformers. Given an attribute
grammar definition of transformation over an XML tree structure, we systematically derive a stream
transformer in two steps. First, an attribute grammar definition of the XML stream transformation
is inferred by applying a program composition method. Second, a finite state transition machine is
constructed through a dependency analysis. Due to the closure property of the program composition
method, our scheme also allows modular construction of XML stream transformers.

We have implemented a prototype XML stream transformer generator, calledaltSAX. The
experimental results show that the generated transformers are efficient in memory consumption as
well as in execution time.
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1. Introduction

XML (Extensible Markup Language) is the W3C’s standard [9] for representing tree-
structured information in the conventional text format. In essence, an XML document
is a human-readable text file whose content is delimited by nestedmarkup tags, e.g.,
<a> ... </a>. It provides a simple yet flexible means to express tree-structured data.
Due to this flexibility, XML is now widely accepted as the standard document format for
structured data representation.

The standardization of XML has increased the opportunities ofXML transformations.
Suppose one possesses a list of items in an XML file and would like to view a selected set
of the items on a Web browser. This can be realized by a pair of XML transformations,
filtering andview generation: the former draws a subset of relevant items from the source
data set and the latter converts the result of the former into XHTML, the rendering language
for Internet Web browsers. The XML transformation technology is also vital for building
Internet-based information systems: two different systems can communicate with each
other by transforming their internal data representation into a common XML representation
and vice versa.

This paper focuses on automatic generation of XMLstream transformations, where
the syntactic elements in the input XML stream, i.e., markup tags, character data (the
embedded strings interleaved by markup tags), etc., are processed on the fly. XML stream
transformation has a strong advantage in its memory efficiency. It allows progressive
processing [16], i.e., partial results of a transformation may be output before the entire input
is read. The memory allocated for partially output data would be reclaimed, and we could
exploit the chance of a minimized memory use. (We notice that stream transformations
do not necessarily improve the memory efficiency. Certain transformations are never
improved by any transformation strategy. We will discuss this issue inSection 5.1.) Most
of the current XML transformation systems and tools adopt thetree transformationmodel,
which manipulatesXML trees, the in-memory tree-structured XML representation. The
tree transformation is memory inefficient in general, since the entire input must be loaded
onto the memory before the transformation. As a counterpart to DOM (Document Object
Model [7], the W3C standard of general purpose document manipulation API), a stream-
based API called SAX (Simple API for XML) [24] has been developed and is widely used
in those applications where memory efficiency is a major concern.

In contrast to its memory efficiency, stream transformation requires a translation of
the intended tree-to-tree transformation into a corresponding imperative procedure that
sequentially processes the input XML symbols. In the translation, programmers must
be responsible not only for analyzing the structure of the input XML and but also for
outputting the transformation result in a well-formed XML format. The translation is
usually carried out by implementing astate transition machine, which controls the behavior
of the sequential transformation by a set of transition rules over states. However, managing
such a state transition system is a complicated task and thus could be a source of errors. It
is also difficult to maintain such a state transition system: even a slight modification in the
original transformation may lead to a substantial change in the state transition system.

The aim of this paper is to provide a convenient tool that automates the translation
of XML tree transformation programs into stream transformation programs. For this,
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Fig. 1. A diagram for XML transformation.

we propose an algorithm that infers the state transition system, where each state
transition is accompanied with a program code computing a partial output result. Based
on this algorithm, we developed a prototype program generation systemaltSAX. The
user can specify XML operations in terms of tree transformation, which are easier to
understand and maintain. They can later be translated, byaltSAX, to memory efficient
stream transformations. This would provide a great help in developing XML stream
transformation programs.

This paper describes the principles and techniques which constitute our program
generatoraltSAX.

The fundamental idea behind our stream transformer generation scheme is the use of
a program composition method drawn from the study of attribute grammars [11]. The
diagram inFig. 1 illustrates the idea. A complete XML tree transformation task comprises
three subtransformations, each of which is characterized by a mathematical function:Parse
parses the entire input to build an XML tree,T transforms the structure of the XML tree,
and finallyUnparseoutputs the result of transformation as an XML stream. Synthesizing
an XML stream transformer is nothing but fusingUnparse◦ T ◦ Parseinto one single
function (the functionT ′ in the figure).

The program generation scheme based on the program composition method has
a notable advantage that it is possible to compose two or more successive tree
transformations into a single stream transformation program: suppose one has a series of
tree transformationsT1, . . . , Tn to be successively applied to the input. IfT1, . . . , Tn meet a
certain condition (given inSection 2.5), one can fuseUnparse◦ Tn ◦ · · · ◦ T1 ◦ Parseinto
one single stream transformation program by repeatedly applying the composition method.
It allows XML transformations to be developed in a modular way.

The idea of using the program composition technique for stream transformer generation
has been exploited by the authors [19]. Weakness in the language defining the
transformations, however, discouraged us from putting it into practice. In the present
paper, we consider a more realistic language. Most importantly, it can expressconditional
transformations, where the result of a transformation may depend on the contents in the
source XML, e.g., tag names and character strings.

There is another proposal of a system for SGML document transformation generation,
called SIMON [10]. However, SIMON concerns composition of tree transformations only
and does not consider stream transformer generation.

Applying a program composition method solely does not provide a complete solution to
the present problem, however. The result of program composition is merely a specification
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of a transformation and does not serve as a stream transformation program. We need further
elaboration to derive the state transition system underlying the transformation where an
appropriate computation task is associated with each state transition. The main technical
contribution of the present paper is to give an algorithm that systematically constructs
such a state transition machine from the specification derived by the program composition
method.

Our algorithm constructing the state transition machine is based on a dependency
graph analysis, which differentiates our approach from existing ones. There are several
proposals for streamed XML processing [2,6,25,16,12,22]. Most of these proposals are
specialized to certain limited applications such as XML validation, filtering, etc. Our
program generation scheme focuses on general purpose XML transformations. Also,
they are all based on automata information induced fromschema informationor node
addressing pattern expressions. A schema informationconfines XML documents to a
restricted set of documents: it specifies the set of markup tag names, the markup occurrence
order by regular expressions, and so on.Node addressing pattern expressionssuch as XPath
[32] provide a means to address subtrees in the input XML by regular expression-like
patterns.

The proposal by Ludäscher et al. [16] is aimed at general purpose streamed XML
queries written in a subset of XQuery [33] language. We would argue that the class of
transformations expressed by their method seems very close to ours but our method has
an advantage in its simplicity. Their method (and other automata-based ones as well) can
be quite complicated, particularly in the process of coupling each state transition with a
computation task. This is because the automata are induced independently to the intended
transformation and hence a rather complex analysis would be required to relate each state
transition with an appropriate computation task. In contrast, our scheme analyzes against a
program code and relates a computation task with each transition in a natural way.

In principle, our algorithm does not require any automata information for generating
stream transformers. However, our experience says that the automata information is
indispensable to obtain feasible XML stream transformation programs. Without automata
information, the algorithm tends to produce a large number of states even when it is applied
to transformations of a reasonable complexity. We therefore assume that the source XML
comes with schema information, from which we can induce a corresponding automaton.
We will show that a remarkable reduction in the number of states is achieved by taking a
product of the generated state transition machine and the induced automaton.

The stream transformer generation scheme presented in this paper covers a large class
of common XML transformations. It can deal with a certain set of basic transformations
such as tag renaming, filtering, etc. Furthermore, our scheme also allows these basic
transformations to be composed together. This makes it possible to develop XML stream
transformation programs in a modular way. For example, we can construct a stream
transformer that generates a stylized presentation of certain selected data items from the
source XML just by defining two transformations, one for selecting relevant data items and
the other for putting them in the presentation structure.

There are still some weaknesses in our stream transformation scheme, however.
They mainly arise from the limitations of the current technology of attribute grammar
composition. The most considerable weakness is that the input XML must not exceed a
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presupposed maximum nesting depth. This indicates that a family of XML documents
whose nesting depth is not known in advance, e.g., XHTML, cannot be the input to the
transformation. Nevertheless we argue that, even with this bounded depth limitation, our
scheme covers a significant class of XML transformations, say, those transformations
which create a different presentation of the input data items. At the end of this paper,
we will discuss the limitations of the present scheme and suggests possible cures, leaving
definite solutions to future investigations.

The rest of this paper is organized as follows:Section 2introduces attribute grammars
as our transformation definition language and presents how XML stream transformation
definitions are derived by using a composition method for attribute grammars.Section 3
introduces our transformer generation scheme. We first exhibit the fundamental idea
of our transformer generation scheme, which is based on a dependency graph analysis
technique, and then we refine the analysis technique to put it to work for practical XML
transformations.Section 4reports on a prototype implementation of our XML stream
transformer generation tool. FinallySection 5concludes the paper with several remarks
on the limitations of our scheme and suggests possible solutions to them.

2. Stream transformer synthesis by attribute grammar composition

This section introducesattribute grammars (or AGs, for short) [15] as our
transformation definition language and shows how a composition method for AGs is
applied to derive the definition of XML stream transformation from a given specification
of XML tree transformation.

Throughout the paper, the bare word “attribute” is reserved for AGs to avoid confusion.
We always write “XML attributes” to refer to so-called attributes in XML.

2.1. The data model

XML trees are usually represented byunranked trees, where each tree node has an
arbitrary (finite) number of child nodes. For example, an XML fragment

<a><b>text</b><c></c><d></d></a>

is represented by an unranked tree inFig. 2(a). However, in the present paper, we use a
different representation because AGs cannot describe computation over unranked trees.

We model XML trees bybinary trees. A binary node in the tree, called anelement
node, corresponds to a pair of matching markup tags; a leaf node is either anempty node

Fig. 2(a). Unranked tree representation. Fig. 2(b). Binary tree representation.

Fig. 2. Two representations for XML tree.
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(represented by a dot in the figure) or acontent node, which corresponds to a string in the
XML document. An element node is attached with its tag name and a content node with its
string data. Each left branch (right branch, resp.) expresses the parent–child relationship
(the sibling relationship, resp.) For example, the binary tree representation of the above
XML fragment is displayed inFig. 2(b).

For the sake of simplicity, we omit XML attributes from the present paper. We can
easily include XML attributes in the representation just by attaching XML attribute data to
element nodes.

The binary tree representation of XML trees is modeled by the grammar specified by
the following set of production rules.

S → T, T → Node $tagT T,

T → Content $cdata, T → Empty,

whereS is a start non-terminal symbol,T is a non-terminal representing binary trees,Node,
Content, andEmpty are terminals representing constructors of element nodes, content
nodes, and empty nodes, resp. $tag and $cdata are terminals representing tag names and
data strings, resp. The present paper does not consider so-calledmixed contents, i.e., string
data interleaved by markups, say,<a>This <b>is a</b> mixed content</a>. This
is just for the sake of simplicity, and we can allow mixed contents by using an alternate
Content production ruleT → Content $cdataT .

The above XML fragment is expressed in the binary tree syntax as follows.

Node “a” (Node “b” (Content “text” )
(Node “c” Empty (Node “d” Empty Empty))) Empty

XML streams are represented by a list-like structure, as defined by the following set of
production rules.

S → E, E → Begin $tagE, E → End $tagE,

E → PCDATA $cdataE, E → Nil.

There are four terminals of list constructors,Begin of begin tags,End of end tags,PCDATA
of data strings, andNil of the end-of-list mark. The above XML fragment is expressed in
the XML stream syntax as follows.

Begin “a” (Begin “b” (PCDATA “text” (End “b”
(Begin “c” (End “c” (Begin “d” (End “d” (End “a” Nil))))))))

2.2. The attribute grammars

In this paper, we adopt attribute grammars (AGs) as a language for defining XML
transformations.

An AG defines a syntax-directed computation over derivation trees of a context-free
grammar, where every node is associated with a fixed set of values, calledattributes.
Each attribute is distinguished by a unique name and we writeN.a to denote the value
of attributea on a nodeN.

Let us explain how attributes are calculated through a simple example given inFig. 3.
The figure gives an AG definition forUnparse, which transforms the input XML tree
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S → T:
S.result = T.unparse;
T.acc = Nil;

T → Node $tag T1 T2:
T.unparse = Begin $tag T1.unparse;
T1.acc = End $tag T2.unparse;
T2.acc = T.acc;

T → Empty:
T.unparse = T.acc;

T → Content $cdata:
T.unparse = PCDATA $cdata T.acc;

Fig. 3. An unparsing transformationUnparsein AG.

(a derivation tree of the context-free language of binary trees defined inSection 2.1) into
the corresponding stream representation.

Attributes on a node of an input tree are calculated according tosemantic rules
associated with the production rule used for the derivation at that node. For example,
consider a nodeN = Node “a” N1 N2. It matches the productionT → Node $tagT1 T2
where N, N1, and N2 match the non-terminal symbolsT , T1, and T2, resp., while the
tag name string “a” does the terminal symbol $tag. By the first semantic rule of this
production, the attributeN.unparseis assigned the valueBegin $tag N1.unparsewhere
the value of attributeN1.unparseis computed recursively for the subtree rooted atN1. The
second semantic ruleT1.acc = End $tagT2.unparsesets the attributeN1.accto the value
End “a” N2.unparsewhere the value ofN2.unparseis also recursively computed. The third
rule simply passes the attributeN.acc to the attributeaccof the child nodeN2.

The AG Unparsecomputes attributes on every node according to the semantic rules
associated with that node. The attribute computation over an input treeNode “a”
(Content “text” ) Empty by Unparseis visualized inFig. 4. The edges of the derivation
tree are depicted with thick lines and the nodes are annotated with corresponding non-
terminal/terminal symbols; the arrows indicate the flow of computation among attributes.
The overall result of attribute computation is returned through the attributeresult, a special
attribute distinguished from others. In this paper, we only consider AGs for transformations
between languages, in particular, between those of XML binary trees and XML streams,
defined inSection 2.1.

Throughout the paper, we consider onlywell-formedAGs [15,1]: an AG is well-formed
if its computation over any derivation tree does not induce cyclic dependency among
attributes.1

Attributes are classified into eithersynthesizedor inheritedones. An attribute is called
synthesized if its value on a node of a derivation tree is defined in terms of attributes
on its child nodes; an attribute on a node is called inherited if it is defined in terms of
attributes of its parent and/or sibling nodes. In the presentUnparseexample,result and
unparseare synthesized attributes andacc is an inherited attribute. Inherited attributes

1 The usual definition of well-formedness requires every attribute to be defined. In this paper, all attributes are
defined either explicitly or implicitly: we assume every attribute missing explicit definition is assigned a special
value representing errors.
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S
result :

Begin“a”(PCDATA“text”(End“a” Nil))

Tunparse:
Begin“a”(PCDATA“text”(End“a” Nil))

acc :
Nil

Tunparse:
PCDATA“text”(End“a” Nil)

acc :
End“a” Nil

Node“a” Tunparse:
Nil

acc :
Nil

Content“text” Empty

Fig. 4. Attribute evaluation byUnparse.

are useful for expressing context-dependent information. In theUnparseexample, the
inherited attributeaccattached on a node denotes the XML stream to follow that node.

There is another orthogonal classification of attributes,syntactic/semanticattributes. An
attribute is called syntactic, if its value ranges over the language of transformation target;
otherwise, it is called semantic. In theUnparseexample, all attributes are syntactic. We
will give an example of the use of semantic attributes in the following subsection.

In order to express conditional transformations, we allow a production rule to have
conditional semantic rules, which select different sets of semantic rules depending on
conditional tests. Conditional semantic rules are written in the following syntax.

IF condition THEN
SemanticRules1

ELSE
SemanticRules2

ENDIF.

The semantic rulesSemanticRules1 are selected if the expressionconditionevaluates to
true; otherwise the other branchSemanticRules2 is selected. The conditionals can be
nested.

We note that a set of semantic rules may not define all the attributes. (That is, some
attributes may not have a corresponding rule.) We assume that, when the semantic rule
for an attributea is missing, it is implicitly assigned a special valueundef, representing
errors. In other words, the attribute has an implicit ruleE.a = undef. We also assume
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that the value of an attribute whose definition refers to another undefined attribute is also
undefined (i.e., it is given the special valueundef).

2.3. Writing an XML tree transformation in AG

Let us show how we can define XML tree transformations through an example.Fig. 5(a)
gives a sample input XML data, which is a (supposedly very long) list of stock quotes
where each stock entry consists of a reference namesymbol and its price information.
The schema information for the stock quotes data is defined inFig. 5(b), using W3C’s
Document Type Definition language (DTD) [9]. Each line<!ELEMENT tag model> in the
DTD defines: (i) a markup nametag and (ii) the children oftag, occurring in the order
specified by a regular expressionmodel. The special notation#PCDATA stands for any
string. For example, the DTD inFig. 5(b)specifies that astock_quotes element has zero
or morestock_quote elements as its children, while astock_quote element has four
elementssymbol, price, change, andvolume, occurring in this order. (For a complete
semantics of DTD, see [9].)

Fig. 6gives an XML tree transformationFILT, a filtering transformation selecting only
those stock items that gained more than 1.0 rise in price (i.e., the numeric value under the
change element is bigger than 1.0) and more than 107 volume of trades.

In the definition ofFILT, the attributexml stands for the transformation result of the
subtree rooted at that node. Whether a subtree is filtered or not is determined by the value
of thecondattribute at everystock_quote node. Thecondattribute on a tree node is set to

<?xml version="1.0"?>
<stock_quotes>
<stock_quote>
<symbol>RIMS</symbol>
<price>32.23</price>
<change>2.17</change>
<volume>13993600</volume>

</stock_quote>

and many more...

</stock_quotes>

Fig. 5(a). A sample data.

<!ELEMENT stock_quotes (stock_quote)*>
<!ELEMENT stock_quote

(symbol,price,change,volume)>
<!ELEMENT symbol (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ELEMENT change (#PCDATA)>
<!ELEMENT volume (#PCDATA)>

Fig. 5(b). Schema in DTD syntax.

Fig. 5. Stock quotes list XML.
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S → T:
S.result = T.xml;

T → Node $tag T1 T2:
IF ( $tag= “stock_quote” ) THEN

IF ( T1.cond ) THEN
T.xml = Node $tag T1.xml T2.xml;

ELSE
T.xml = T2.xml;

ENDIF
ELSE IF ( $tag= “change” ) THEN

T.cond = T1.data> 1.0 & T2.cond;
T.xml = Node $tag T1.xml T2.xml;

ELSE IF ( $tag= “volume” ) THEN
T.cond = T1.data> 10000000 & T2.cond;
T.xml = Node $tag T1.xml T2.xml;

ELSE
T.cond = T2.cond;
T.xml = Node $tag T1.xml T2.xml;

ENDIF

T → Content $cdata:
T.data = to_number($cdata);
T.xml = Content $cdata;

T → Empty:
T.cond = true;
T.xml = Empty;

Fig. 6. A filtering transformationFILT.

false if and only if any of its subtrees does not meet the filtering condition, i.e., if it contains
a subtree that is either<change>x</change> with x ≤ 1.0 or <volume>x</volume>
with x ≤ 107. Thecondattribute is computed by setting it to false as soon as a node that
does not meet the filtering condition is encountered. (The rules for the conditional branches
for change andvolume nodes are responsible for this task.) The semantic rule ofEmpty
production sets the initial value of thecondattribute totrue. The string data underchange
andvolume nodes are converted to numeric data by a built-in functionto_number2 and
passes the numeric value to the parent node through the attributedata. (The semantic rules
for theContent production do this.)

2.4. Parsing and unparsing transformations

In order to synthesize a stream transformation from a user-defined tree transformation,
we need to combine the tree transformation with parsing and unparsing transformations.
Users only need to define the tree transformation, leaving the definitions of parsing and
unparsing to the transformer generation system.

2 The value returned byto_number is undefined if its argument is not in a valid string representation of
numeric data. This causes no problem in the present transformation because any element nodes with non-numeric
data string (i.e., thesymbol elements) never refer to the result of numeric conversion.
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S → E:
S.result = E.parse;

E → Begin $tag E1:
E.parse = Node $tag E1.parse E1.stk1;
E.stki = E1.stki+1; ( i = 1, . . . , d − 1 )

E → End $tag E1:
E.parse = Empty;
E.stk1 = E1.parse;
E.stki+1 = E1.stki; ( i = 1, . . . , d − 1 )

E → PCDATA $cdata E1:
E.parse = Content $cdata;
E.stki = E1.stki; ( i = 1, . . . , d )

E → Nil:
E.parse = Empty;

Fig. 7. A parsing transformationParsein AG.

We have already seen the definition ofUnparsein Fig. 3. The definition of the parsing
transformationParse is technically more involved. The source of complication is that,
since XML is defined as a context-free language, we need a stack device to parse it.
Unfortunately the AG composition method, which will be discussed inSection 2.5, is not
capable of dealing with stack or similar devices.

In the present paper we circumvent this problem by assuming that the input XML has a
bounded nesting depth. With this assumption, we can define the parsing transformation as
in Fig. 7, by simulating a stack of finite depthd by d attributesstk1, . . . , stkd, whered is
the maximum nesting depth of the input (with the outermost nest level being 1).

Note that the definition ofParse leaves the matching of begin tags and end tags
unchecked: it assumes that all the markup tags of the input are balanced. Though we can
give a more intricate variation ofParsethat strictly checks the balance, we adopted the
present definition for the sake of simplicity. This simplification does not cause a problem
in practice, since a stream-based XML parser frontend3 such as SAX is responsible for
checking the tag balance.

2.5. The AG composition method

Ganzinger and Giegerich [11] have proposed a method, calleddescriptional
composition, for composing multiple AGs into a single one. Their method provides a
completely mechanized composition scheme, which is driven by a set of rewriting rules.
Basing on their method, Boyland and Graham [4] have proposed an extension for dealing
with semantic attributes and conditionals. A summary of the descriptional composition
algorithm is given inAppendix A.

3 This is a jargon in the XML community. The word “stream-based XML parser frontend” stands for alexer,
which produces a stream of XML syntactic elements from a bare input XML.
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AG composition can be applied to a limited class of AGs satisfying the so-called
SAMODUR (syntactic at most once dynamic use requirement)condition [4], which is an
extension of thesingle-usecondition proposed in [11]. An AG is SAMODUR if every
syntactic attribute is referenced at most once in every different set of semantic rules
selected by conditionals. That is, the same syntactic attribute may be referenced more
than once from different conditional branches but not from the same branch. It is even
allowed that an attribute is not referenced at all. On the other hand, semantic attributes can
be referenced an arbitrary number of times.

In what follows, we assume that all AG definitions meet the SAMODUR property. That
is true for all the examples (Unparse, Parse, andFILT) presented so far.

The next theorem is vital for the synthesis of XML stream transformations.

Theorem 2.1 (Closure property, Boyland and Graham [4] ). Two SAMODUR AGs can
always be composed by the descriptional composition. The result of the composition is
also a SAMODUR AG.

The closure property is necessary for the transformer synthesis procedure, since an
XML stream transformation is obtained as the result of repeated compositions of three
transformations,Parse, the user-defined tree transformation, andUnparse. In addition, we
can greatly benefit from this property, as it further allows us to compose two or more
successive user-defined tree transformations. Again, thanks to the closure property, we can
obtain a synthesized XML stream transformation for the transformationUnparse◦ Tn ◦
· · · ◦ T1 ◦ Parse, if all the XML tree transformationsT1, . . . , Tn are SAMODUR.

The present paper does not give any further detailed account for the AG composition.
The detail of the AG composition is a separate topic, and readers should be able to follow
the subsequent discussions just by acknowledging the facts above. Interested readers are
deferred to the literature given inAppendix A.

3. The transformer generation scheme

In the previous section, we have discussed how to synthesize an XML stream
transformer using an AG composition. The synthesized result, however, is just a
specification and is not directly executable as an XML stream transformer. This section
presents a scheme for converting the synthesized AG specification into an executable
stream transformer.

3.1. Transformer generation by attribute dependency analysis

The intuition behind our scheme is that an XML stream transformer is a finite state
transition machine where each transition is accompanied with a computation task and
an output action. The essence of our scheme lies in an algorithm that constructs such
a finite state transition machine. The algorithm is comprised of two phases. First, it
constructs a state transition machine by tracing how the attribute dependency (i.e., the
define-use dependency among attributes) changes for every possible input, where each
state is represented by a different pattern of attribute dependency. Second, it calculates



S. Nishimura, K. Nakano / Science of Computer Programming 54 (2005) 257–290 269

S → T:
S.result = T.xml;

T → Node $tag T1 T2:
T.xml = Node “a” (Node “b” T1.xml Empty) T2.xml;

T → Empty:
T.xml = Empty;

Fig. 8(a). A simple transformation.

S → E:
S.result = E.s1;
E.h1 = Nil;

E → Begin $tag E1:
E.s1 = Begin “a” (Begin “b” E1.s1);
E.s2 = E1.s3;
E1.h1 = End “b” (End “a” E1.s2);
E1.h2 = E.h1;
E1.h3 = E.h2;

E → End $tag E1:
E.s1 = E.h1;
E.s2 = E1.s1;
E.s3 = E1.s2;
E1.h1 = E.h2;
E1.h2 = E.h3;

E → Nil:
E.s1 = E.h1;

Fig. 8(b). The synthesized transformation.

what to compute (and what to output) for each transition, using a special representation of
attribute values.

The two phases are explained in the following sections. As an example, we consider
the tree transformation inFig. 8(a), which recursively replaces every markup<tag>
... </tag> with <a><b> ... </b></a>. Fig. 8(b) gives the result of the program
composition forUnparse ◦ T ◦ Parse. To simplify the presentation, we assumed the
maximum nesting depth of the input is 2 and omitted the production rules for data strings
and their associated semantic rules.

The explanation below is a summary of an algorithm proposed in our previous work
[19], which only applies to the cases where the transformation definition does not involve
any conditionals or semantic attributes. We first explain our algorithm in this simplified
setting in order to highlight our fundamental idea in the finite state transition machine
construction.

3.1.1. Generating state set and transition rule
Our program generation scheme first constructs a finite state transition machine. As a

device for attribute dependency analysis, it utilizesattribute dependency graphs.
Each state of the state transition machine is identified by the pattern of an attribute

dependency graph. The patterns of attribute dependency graphs are derived from the
semantic rules of each production rule. For example, the attribute dependency graphs for
the synthesized AG ofFig. 8(b)are given inFig. 9. For each production ruleE → · · · E1,
attributes annotatingE are placed on the upper bar, and those annotatingE1 on the lower
bar. Synthesized attributes are placed on the left side and inherited attributes on the right
side of each bar. Each attributea on a bar is marked by a black triangle if it is defined
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Fig. 9. Attribute dependency graphs.

(i.e., if there is a rule defining the value ofa); otherwise, it is marked by a cross. Note that
the inherited attributes on the upper bar and the synthesized attributes on the lower bar are
never marked, because they are not defined but just referenced by other attributes in the
semantic rules.

Each edge in a graph represents a define-use relationship for a pair of attributes. If a
defined attribute has a dependency (i.e., it refers to another attribute value), an edge to
the referred attribute is drawn. If an attribute is defined but has no dependency (i.e., if
the attribute has no reference to other attributes and is assigned an XML symbol stream
terminated byNil), no edge is drawn.

The construction of a finite transition machine enumerates all the states (i.e., the
dependency patterns), beginning with the graph of the start production as the initial state.
It examines all the possible inputs at every state to find new states. For example, suppose
a begin tag is read from the input at the initial state. To deliver the new state, we paste
the graph of theBegin production under that of the start production (the left figure below)
andmergethem into a single graph (the right figure below), by erasing the middle bar and
taking the transitive closure of dependency edges. Any attribute that transitively depends
on an undefined attribute (e.g., the attributeh3 in the figure) is marked undefined.
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Fig. 10. Finite state transition machine.

Suppose an end tag comes next. Then, similar to the above, the graph ofEnd is pasted
and then merged.

Here notice that the resulting graph has the same pattern as that of the start production.
This indicates that reading a begin tag and then an end tag at the initial state brings the
transition machine back to the initial state.

Repeating the above process for every possible input until no new state is added by
the process, we obtain the state transition diagram inFig. 10, whereq0 is the initial state,
and the final and error states are designated by double-lined and dashed-lined ovals, resp.
The stateq6 is a final state, since the attributeresult is defined and has no dependency,
which indicates that the transformation is finished. The state Error is an error state, since
the attributeresult is undefined, which indicates an error during transformation.

We note that the construction of such a finite state machine always terminates, since
the number of different dependency patterns is finite. However, this is not the case for
the algorithm that deals with conditionals and semantic attributes, as we will discuss in
Section 3.3.
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3.1.2. Calculating computation tasks
After constructing the finite state transition machine, we calculate the computation tasks

and output actions associated with each state transition.
In the evaluation of attribute values against an XML stream, some attribute values may

be determined only after more inputs are read. For example, in the state transition from
q1 to q2, the value of the attributeh1 cannot be fully determined, since the semantic
rule E1.h1 = End “b” (End “a” E1.s2) defined for the productionBegin refers to the
attributeE1.s2, whose value is yet to be determined.

Though we cannot give a fixed value toE1.h1, we can instead assign it the “rest of the
computation”, which expresses how to compute the attribute when the referenced attribute
value is fixed. We use a specialcompositional representationto express the “rest of the
computation”. The compositional representationR is a composition ofconstructors C, as
defined by the following grammar:

R ::= X | C | R ◦ R
C ::= Begin tag [] | End tag [] | PCDATA cdata[] | Nil | |[]

whereX stands for a variable that ranges over the set of compositional representations,
tag and cdata represent a constant string for tag name and data string, resp., and[] is
a hole, a placeholder to be eventually filled with an expression. Each constructorC is
intended to represent a function, writtenλx.C[x] in λ-notation [3], whereC[x] stands for
the expression obtained by filling the hole[] with x. (Nil is also interpreted as a function
λx.Nil, which takes an argument that is never referenced.) For the sake of readability, we
writeBegin tag for Begin tag[], End tagfor End tag[], PCDATA cdatafor PCDATA cdata[],
andId for []. The constructors can be arbitrarily combined using the function composition
operator _◦ _. For example, in the transition fromq1 to q2, the attributeh1 receives a
compositional representationEnd “b” ◦ End “a”.

Function composition is associative (i.e.,(R1 ◦ R2) ◦ R3 = R1 ◦ (R2 ◦ R3)) and
hasId as a unit element (i.e.,Id ◦ R = R ◦ Id = R). We may use these algebraic
laws to simplify expressions. In particular we would conventionally write a compositional
representation asC1 ◦ · · · ◦ Cn, omitting parentheses.

We can alternatively express the compositional representation in aconcatenation list
reading the function composition operator as a list concatenation operator,Id as an
empty list, and other constructors as corresponding XML symbols. More formally, the
concatenation list representation�R� for a compositional representationR is defined by

�Id� = [], �X� = X, �C� = [C], �C1 ◦ C2� = C1@C2,

where [] is an empty list,[C] is a singleton list of a constructorC, and _@_ is a
list concatenation operator. The concatenation list representation provides a conventional
means to implement the compositional representation in a non-functional programming
language.

Let us explain by an example how the computation task associated with each transition
is calculated. The figure below visualizes a process of graph merger for the state
transition fromq1 to q2, where we annotate each dependency edge with a compositional
representation.
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The attributes in the graph for theBegin production (the lower graph on the left) are
attached with concrete compositional representations derived from the semantic rules. In
contrast, each attributea in the graph of the stateq1 (the upper graph on the left) is attached
a variableXa. This is because the assigned compositional representations in a particular
state may vary depending on the transition path along which the state is reached. The
varying representation assigned to each attribute is thus represented by a variable.

The new representation assigned in the next state (in this caseq2) is calculated along the
transitive closure path of edges. For example, to calculate the compositional representation
of h2 in q2, we compose the representations assigned to the graph edges along the transitive
closure path and obtain the new representationId ◦ Xh1 ◦ Id = Xh1.

According to the analyses above, we can generate a complete XML stream
transformation program.Fig. 11 shows a pseudo program code of the generated
transformer. In the program, the state transitions are expressed by procedure calls
to q0, . . . , q5, corresponding to the states inFig. 10. Each procedure receives the
compositional representations of attributesh1, h2, h3 (through the argumentsXh1,
Xh2, Xh3, resp.) from the procedure corresponding to the previous state. TheMAIN
procedure initiates transformation by a call to the procedureq0, with compositional
representations derived from the semantic rules of start production being the arguments
of the procedure call. The symbolundef in the program denotes a specialundefinedvalue.
Theerror statement aborts program execution and theexit statement terminates execution
successfully.

In order to minimize the memory usage, the generated program writes the accumulated
partial result of the transformation to theresult attribute for every transition. Theoutput
statement does this task: it receives a compositional representationC1 ◦ · · · ◦ Cn and
writes a sequence of corresponding XML symbols forC1, . . . , Cn in this order. Since
the output statement flushes the partial transformation result for each transition, we can
assume the variableXresult is always assignedId in every state.

3.2. Dealing with data values and conditionals

The program generation scheme we have explained so far cannot compute over data
values embedded in the input XML, i.e., tag names and character data strings. This
limitation rules out many practical XML transformations, e.g., the filtering transformation
given inFig. 6: it needs to inspect the embedded data values in order to judge the relevance
of data items.
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procedure MAIN()
call q0(Nil, undef, undef)

procedure q0(Xh1, Xh2, Xh3)

case next_XML_symbolof
Begin $tag ⇒ output Begin “a” ◦ Begin “b”;

call q1(End “b” ◦ End “a” , Xh1, undef);
End $tag ⇒ output Xh1; exit;
Nil ⇒ output Xh1; exit;

procedure q1(Xh1, Xh2, Xh3)

case next_XML_symbolof
Begin $tag ⇒ output Begin “a” ◦ Begin “b”;

call q2(End “b” ◦ End “a” , Xh1, Xh2);
End $tag ⇒ output Xh1; call q0(Xh2, Xh3, undef);
Nil ⇒ error;

procedure q2(Xh1, Xh2, Xh3)

case next_XML_symbolof
Begin $tag ⇒ output Begin “a” ◦ Begin “b”;

call q3(End “b” ◦ End “a” , Xh1, undef);
End $tag ⇒ output Xh1; call q1(Xh2, Xh3, undef);
Nil ⇒ error;

procedure q3(Xh1, Xh2, Xh3)

case next_XML_symbolof
Begin $tag ⇒ output Begin “a” ◦ Begin “b”;

call q3(End “b” ◦ End “a” , Xh1, undef);
End $tag ⇒ output Xh1; call q4(Xh2, undef, undef);
Nil ⇒ error;

procedure q4(Xh1, Xh2, Xh3)

case next_XML_symbolof
Begin $tag ⇒ output Begin “a” ◦ Begin “b”;

call q3(End “b” ◦ End “a” , Xh1, undef);
End $tag ⇒ output Xh1; call q5(undef, undef, undef);
Nil ⇒ error;

procedure q5(Xh1, Xh2, Xh3)

case next_XML_symbolof
Begin $tag ⇒ output Begin “a” ◦ Begin “b”;

call q4(End “b” ◦ End “a” , undef, undef);
End $tag ⇒ error;
Nil ⇒ error;

Fig. 11. The generated XML transformer.

For a practical application of our program generation scheme, AGs must be reinforced
with enriched features, namely conditionals and semantic attributes introduced in
Section 2.3. However, it is not straightforward how the program generation scheme can
be made compatible with those new features. They would disrupt our program generation
scheme in the following ways.
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• When conditionals are involved in computation, the attribute dependency pattern cannot
be always determined uniquely for every input symbol, since a different set of semantic
rules (and hence a different dependency pattern) may be selected depending on the run-
time value of conditional predicates. We need a fundamental refinement on the strategy
for the construction of a finite state transition machine, whose states are identified by
dependency patterns.

• In the presence of semantic attributes, the dependency may be non-linear. That is,
computation for an attribute may depend on two or more other attributes (e.g., given
a semantic ruleE.a = Begin E1.t E1.b, the attributea depends on two attributest and
b). The “rest of the computation” of a semantic attribute with non-linear dependency
cannot be expressed in the form of linear compositional representation defined in
Section 3.1.

We propose a remedy to these problems by refining the state enumeration process in
the finite state transition machine construction. Instead of looking into just one next input
symbol, we examine the state reached by a sequence of input symbols, expecting that
reading several more input symbols (calledlookaheadsymbols) would provide enough
information to resolve the problems mentioned above.

The refined state enumeration process is driven by a scheme calleddelayed graph
merging, in which graph merging is delayed until enough information is provided by the
lookahead symbols. In the following, we explain how the problems mentioned above are
resolved using a delayed graph merging scheme.

3.2.1. Delayed graph merging for conditionals
Let us first show, through an example, how the dependency pattern is inferred when

conditionals are involved.
Suppose we obtain an AG specification of an XML stream transformation, as shown

below. (Note that this is a non-sensical example taken for explanatory purposes only.)

S → E:
S.result = E.xml;

E → Begin $tag E1:
IF ( E1.s ) THEN

E.xml = Begin “a” E1.xml;
E.s = ($tag= “a”);

ELSE
E.xml = Nil;
E.s = ($tag= “a”);

ENDIF

A state search path for the example transformation that would be examined by
the refined state enumeration procedure is illustrated inFig. 12. The graphFig. 12(a)
represents the initial state. Suppose the first symbol is a begin tag. This yields a sequence
of two graphs (Fig. 12(b)), whose merger is delayed until the value of the attributeE1.s,
referenced by the conditional predicate, is fixed. In the figure, an attribute referenced by a
conditional predicate is marked by an asterisk, and an attribute whose dependency is not
yet determined is marked by a white triangle. Every piece of graph that has an attribute
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Fig. 12. Delayed graph merging process for conditional.

with undetermined dependency is marked by a question mark and is left unmerged. Note
that the attributes on the middle bar inFig. 12(b) has a fixed dependency independent of
the conditional predicate and is marked by a black triangle.

Now suppose the second input is again a begin tag. We then obtain the graph sequence
in Fig. 12(c), where the conditional construct for the previous input is ready to select a
conditional branch. There are two possible dependency patterns to select, namely one for
the true branch and the other for the false branch (Fig. 12(d) and (f), resp.). At this moment,
the procedure merges any consecutive sequence of graphs which has a fixed dependency.
In both cases, the two uppermost graphs in the sequence are merged, and the new states
Fig. 12(e) and (g) are generated.

According to this extension, each state is now represented by a sequence of graphs,
where graphs with fixed dependency are identified by the dependency pattern, while the
rest of the graphs are identified by the production rule from which they are derived. For
example,Fig. 12(b) and (e) represent the same state because both of the upper graphs have
the same pattern and the lower ones are derived from theBegin production.

Note thatFig. 12(c), (d), and (f) are intermediate representations and are not counted as
new states. The program generator generates a program which, when it reads a begin tag
at the state (b), evaluates the predicate expressionE1.s and makes a conditional transition
to either (e) or (g) depending on the value of the predicate expression.

3.2.2. Delayed graph merging for semantic attributes
In this paper, we circumvent the problem of a non-linear dependency as follows: when

there is a graph with a non-linear dependency, the state enumeration procedure leaves the
graph and continues analysis for lookahead symbols, expecting the non-linear dependency
to eventually converge to a linear (or null) dependency. The delayed graph merging is
utilized for this task.

Let us show how the delayed graph merging resolves non-linear dependency. Consider
the following example of XML stream transformation. (This is an example taken for
explanatory purposes, too.)

S → E:
S.result = E.xml;
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Fig. 13. Delayed graph merging process for non-linear dependency.

E → Begin $tag E1:
E.xml = Begin E1.s E1.xml;
E.s = $tag;

A state search path for the example transformation is illustrated inFig. 13. The graph
in Fig. 13(a) represents the initial state. Suppose the first symbol is a begin tag. This yields
a sequence of two graphs (Fig. 13(b)), whose merging is delayed because the value of
attributeE.xmldepends on two different attributes, namelyE1.xmlandE1.s. In the figure,
an attribute that has non-linear dependency is marked by a white triangle. Every graph
that has non-linear dependency is marked by a question mark, which indicates merging
this graph with others is postponed until a merger of any consecutive sequence of graphs
makes every non-linear dependency converge to a linear (or null) dependency.

Now suppose the second input is again a begin tag. We then obtain the graph sequence
of Fig. 13(c). Here we can see that the merger of the upper two graphs resolves the non-
linear dependency in the middle graph. Hence we merge them to obtain a sequence of
graphs ofFig. 13(d) as a new state.

Here we notice that the refined state set enumeration process may not terminate. When
there is a state search path along which not enough information is provided by any finite
number of lookaheads (i.e., when references from a conditional predicate never resolve
and/or some non-linear dependency never converges to a linear or null dependency), an
everlasting sequence of graphs waiting for the dependency resolution will be produced.

After the construction of the finite state transition machine, the computation
task associated with each state transition is calculated. Since the graphs merged by
the delayed graph merging scheme involves dependency edges with at most one
single dependency, we can utilize the compositional representationC1 ◦ · · · ◦ Ck (k ≥ 1)

introduced inSection 3.1.2, with the following extension to the set of constructors:

C ::= · · · | E (E has at most one occurrence of[])
E := [] | p(E1, . . . , En) (n ≥ 0)

where p stands for built-in functions and constants (a constant is a built-in function
with parity 0) such as arithmetics, boolean operations, etc. We do not allow the holes to
appear in the tag name and data string positions of constructorsBegin tag [], End tag [],
andPCDATA cdata[]. The computation associated with each state transition is calculated
similarly to that inSection 3.1.2.

The compositional representation for XML symbol constructors is dealt with in the
same way as described inSection 3.1.2, during the execution of the transformation
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program: the compositional representation assigned for the special attributeresultis output
for every transition; for other attributes, it is composed with other representations before
it is passed to the next state. Constant folding is applied to a compositional representation
C1 ◦ · · · ◦ Cn, if Ci ’s are extended constructors of the formp(E1, . . . , En) andCn has no
hole (i.e.,Cn represents a constant value). For example, the representation 2∗[] ◦ 1+3∗[] ◦
5 is folded into 32, which is obtained by calculating 2∗ (1 + 3 ∗ 5).

Note that the scheme we proposed above is just one of the possible solutions. There
could be other different ways to execute the AG specification. For example, one may just
leave the execution of the obtained AG entirely to the general lazy evaluation scheme
as Johnsson did [14], which also minimizes the memory usage. However, our method
has a strong advantage over lazy evaluation. As we will discuss inSection 3.3, we can
exploit more opportunities of optimizations through static analysis into the obtained AG
specification. Another reason why we choose not to rely on the general lazy evaluation
scheme is that it is available only in a limited variety of programming languages such as
Haskell [27]. Our scheme can be implemented in a wide range of conventional languages
such as Java, on which we implemented our prototype program generation system.

A more moderate improvement to the present scheme would be to allow non-linear
dependency. It would make the state enumeration procedure more likely to terminate. On
the other hand, the compositional representation must be refined so that it can express the
“rest of the computation” that depends on two or more values and the generated program
must be responsible to manage it. This would greatly complicate the program generation
phase. For the sake of simplicity, we adopted the conservative approach that enforces the
linearity of dependency in the current implementation. The non-termination problem can
be compensated by a refined state enumeration process discussed below.

3.3. State space compaction by schema information

The program generation scheme discussed so far tends to generate a large (and often
infinite) number of states. The reason for the state explosion is that the state enumeration
algorithm counts all the dependency patterns reached by arbitrary inputs as states. This
causes the resulting finite state transition machine to include many irrelevant states, which
are never reached by anywell-typedinputs, i.e., the inputs that respect the given schema
information.

In the rest of this section, we show how it is possible to reduce the state space (and
sometimes to turn an infinite state space into a finite one) by pruning irrelevant states
according to the schema information.

In order to utilize the schema information for state space compaction, we need a finite
automaton that accepts the set of all XML streams which are confined to the given schema.
We assume that the schema information is given by a DTD [9]. It is easy to convert a DTD
into a finite automaton if the DTD is non-recursive, but it is not possible if the given DTD
is recursive (i.e., if it is allowed to have nested tags of the same name, say,<a> ... <a>
... </a> ... </a>) [25]. This is because recursive DTDs allow an arbitrary number of
nestings and in that case no finite automaton can check the balance of begin tags and end
tags. However, when the input document has a bounded nesting depth (and this is what we
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γ (d, EMPTY) = ε

γ (d, tag) =




Begin tag; γ (d − 1, r ); End tag

if d > 0, <!ELEMENT tag r> is in the given
DTD, andγ (d − 1, r ) �= ∅

∅ otherwise

γ (d, #PCDATA) = PCDATA

γ (d, r1; r2) =
{ ∅ if γ (d, r1) = ∅ or γ (d, r2) = ∅

γ (d, r1); γ (d, r2) otherwise

γ (d, r1 + r2) =




∅ if γ (d, r1) = ∅ andγ (d, r2) = ∅
γ (d, r1) if γ (d, r2) = ∅
γ (d, r2) if γ (d, r1) = ∅
γ (d, r1) + γ (d, r2) otherwise

γ (d, r ∗) =
{

ε if γ (d, r ) = ∅
γ (d, r )∗ otherwise

Fig. 14. Conversion of DTD to regular expression.

have assumed), we can construct a finite automaton for documents with a bounded nesting
depth as follows.

First we convert the given DTD into a regular expression. The set of regular expressions
is defined by the following BNF:

r ::= ∅ | ε | a | r ; r | r + r | r ∗,

where ∅ represents the empty set of strings (i.e., no string is matched),ε the null
string,a the string that contains the single alphabet symbol,r1; r2 concatenation of two
strings,r1 + r2 alteration of either of the two strings, andr ∗ zero or more repetition of
strings. The alphabet of the resulting regular expression isBegin tag1, . . . , Begin tagn,
End tag1, . . . , End tagn, PCDATA, Nil.

The regular expression to obtain isBegin tag;γ (d − 1, tag);End tag;Nil, where the
functionγ is defined inFig. 14, d is the maximum nesting depth, andtag is the root tag
name specified in the DTD. The idea behind this conversion is that any input beyond the
presupposed maximum nestingd is ignored and is replaced by∅, which represents an “out
of nesting depth” error.

Once a regular expression is obtained, the standard algorithm for converting a regular
expression into a deterministic finite automaton applies [13]. Let M = (Q,A, δ, q0, F)

be the obtained automaton, whereQ is the finite set of states,A = {Begin tag1, . . . ,
Begin tagn, End tag1, . . . , End tagn, PCDATA, Nil} be the alphabet,δ : Q × A → Q be
the state transition function,q0 ∈ Q be the initial state, andF ⊆ Q be the set of final states.

Let M ′ = (Q′,A′, δ′, q′
0, F ′) be the automaton of the finite state machine generated

by the attribute dependency analysis. (M ′ is very similar toM, but we notice that it has
a different alphabetA′ = {Begin, End, PCDATA, Nil}.) We can reflect the information
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drawn from the given DTD to the finite state machineM ′ by taking aproductof the two
automataM andM ′ as below.

The product automatonM × M ′ is an automaton(Q′′,A′′, δ′′, (q0, q′
0), F ′′)

satisfying

Q′′ ⊆ Q × Q′
A′′ = A

δ′′((q, q′), a) =




(p, p′) if, for sometag ∈ {tag1, . . . , tagn},
a = Begin tag, p = δ(q, Begin tag),
and p′ = δ′(q′, Begin)

or
a = End tag, p = δ(q, End tag),
and p′ = δ′(q′, End)

(δ(q, a), δ′(q′, a)) if a = PCDATA or a = Nil
not defined otherwise

F ′′ = (F × F ′) ∩ Q′′

whereQ′′ is the minimum state set reached by the transition functionδ′′.

Taking product has a significant effect in the reduction of the number of states in
practice, since in most XML transformations the number of states of the DTD automaton
is much less than that of the finite state transition machine obtained by the attribute
dependency analysis.

In addition to the reduction in number of states, we can exploit another chance of
optimization. The product of two automata provides refined information on the input: it
provides the tag name information for each begin tag input. This information can be utilized
to detect some run-time behavior statically. For example, suppose a transition incurred by
an inputBegin tag is accompanied by a computation that involves conditionals, say,IF
($tag = “a”) THEN ... ELSE ... ENDIF. Since the tag name referred to by $tag is
known from the automaton transition, we can replace the conditional with the appropriate
branch, discarding the other. This not only slightly improves the execution time, but also
contributes to further reduction in the number of states, since we can omit those states
which are reached by the irrelevant branch.

4. Implementation and experimental results

We have implemented the program generation scheme discussed in the previous section
in a prototype XML stream transformer generatoraltSAX.

The generator takes an XML tree transformation definition (written in the style of AG)
and a DTD that confines the input XML. The generator infers the maximum nesting depth
from the DTD if it is non-recursive; otherwise the user must supply the maximum nesting
depth. The generator produces an XML stream transformation program written in Java
(while the generator itself is written in Objective Caml [26]). We adopt a Xerces SAX
interface [31] as the frontend.
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Table 1
altSAXvs. XSLT (memory usage)

(a) Transformations applied to a fixed
input (size: 4MB)

(b) FILT transformation applied to varying
sizes of inputs

We evaluated several XML stream transformation programs generated by the tool,
with comparison to the Xalan XSLT processor [30], one of the most popular XML
transformers based on the tree transformation model. The experiments were conducted
on a PC (Pentium III 600 MHz, 256 MB memory) running Sun Solaris 8. Transformations
are applied to XML files of different sizes that represent a database of stock quotes, whose
DTD is given inFig. 5(b).

We measured memory usage and execution time for the following four transformations.

IDENT Just copying the input to the output.
VIEW Generating an XHTML view of stock quotes (seeAppendix Bfor the definition).
FILT Filtering stock data (which has been defined inFig. 6).
FILTVW Creating an XHTML view of selected stock information by applyingFILT

followed byVIEW.

Using altSAX, we can generate theFILTVW transformation program just as the
composition ofFILT andVIEW transformations. We compared this composedFILTVW
transformation program with an XSLT program that does the same transformation as the
composed transformation program does.

Table 1shows the required maximum memory sizes (which are estimated from the
garbage collection messages) of the four transformations.

Table 1(a)compares maximum memory sizes required by the different transformations.
This result shows that programs generated byaltSAX is far more memory-efficient than
XSLT transformations.Table 1(b) shows how the maximum memory size varies for
increasing sizes of inputs. (Note that we use a logarithmic scale for they-axis. We show the
results for theFILT transformations only. The results for other transformations are very
similar.) While the amount of memory required by XSLT transformations is proportional
to the input size, only a constant size of memory is required by the generated programs.
These results together show that transformation programs generated byaltSAXachieve
reasonable memory-efficiency and they are robust to the increasing sizes of inputs.

The reduced strain on the memory subsystem improves the execution time too.
Table 2(a)compares the execution times of the four different transformations for a fixed
input. The generated programs are faster than XSLT transformations in elapsed time,
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Table 2
altSAXvs. XSLT (execution time)

(a) Transformations applied to a
fixed input (size: 4MB)

(b) FILT transformation applied to
varying sizes of inputs

We measured both elapsed and cpu times. The former is shown by shaded bars and the latter by solid bars.

though a bit slower in cpu time for some transformations.4 Table 2(b)shows the execution
times of FILT transformation applied to increasing sizes of inputs. (Note that we use
a logarithmic scale for they-axis.) We can observe that the elapsed time of the XSLT
transformation rapidly increases for the inputs of larger sizes, compared to the cpu time.
This indicates that loading the entire input puts a strong strain on the memory subsystem,
in particular when the size of the input is very large, and degrades the performance of
transformation significantly. In contrast, generated programs execute in shorter (elapsed)
time for larger inputs, because they put less strain on the system. They can finish the entire
transformation process with small overheads, as indicated by the small differences between
elapsed and cpu times.

5. Concluding remarks

We have proposed a scheme that automatically translates XML tree transformation,
specified as attribute grammars, into an executable XML stream transformer. Generated
XML stream transformers are more efficient in memory use compared to conventional tree
transformers since the input is processed on the fly. We have implemented the proposed
scheme in a prototype XML stream transformer generatoraltSAX. UsingaltSAX, we can
easily develop stream transformations just by giving the specification of the intended tree
transformation.

The novelty of our scheme is in the use of attribute grammar composition and a static
analysis on the composition result for generating an executable program. In particular,
the closure property of the composition enables us to develop stream transformations in a
modular way, i.e., we may combine simple transformations to obtain a more involved one.

As we have mentioned inSection 1, the current scheme for stream transformer
generation has a few limitations which would cause problems when it is applied to a

4 The generated programs are not very efficient in cpu time because of their interpretive overheads. Current
implementation generates intermediate code for interpretation, which is a major bottleneck of execution. This
should be improved by further optimization.
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S → T:
S.result = T.rev
T.acc = Empty

T → Node $tag T1 T2:
T.rev = T2.rev
T1.acc = Empty
T2.acc = Node $tag T1.rev T.acc

T → Empty:
T.rev = T.acc

Fig. 15. Reversal transformation (the rule forContent is omitted).

certain class of practical transformation tasks. We conclude this article by mentioning these
limitations and suggesting possible remedies to them.

5.1. Inherently memory-inefficient transformations

There is a class ofinherently memory-inefficienttransformations.Fig. 15 gives such
an instance of transformation that reverses the order of occurrences of markups at every
nesting level. The generated transformation program would consume as much memory as
the tree transformation would do, as it needs to keep the whole input XML symbols until
it reaches the very last input symbol.

There is no solution to this problem: any program must load the entire input on the
memory to conduct this transformation.

5.2. Limited expressiveness of transformations

We have chosen AGs as the transformation specification language, because they
provide a firm basis for program composition. The composition method makes it possible
to automate XML stream transformer generation and also to combine two or more
transformations in a modular way.

However, the class of AGs which we consider in this paper cannot express certain
transformations, because of the limited computational power of AGs that arises from the
following factors. First, AGs must satisfy the linearity condition (SAMODUR), as required
by AG composition. Second, the attribute evaluation of an AG takes at most linear time in
the size of the input, counting the computation of a semantic rule as one unit of time [8].
Therefore, the transformations written in AGs are only able to increase the size of the input
by a constant factor, and so are those expressed by the transformation definition language
considered in this paper. The class of transformations with a linear increase in size covers
many popular XML stream transformations, e.g., those transformations experimented in
Section 4. However, it would be desirable to be able to apply our scheme to transformations
of higher complexity, say, sorting transformations withO(n logn) complexity.

Recent advances in the study of program composition techniques for more general
transformation frameworks may contribute to improve this deficiency in the expressiveness
of our current transformation definition language. Voigtländer proposed a composition
method for macro tree transducers [29], which are an abstraction of transformation
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systems expressed by primitive recursive program schemes. He also showed that his
composition method can be adopted for composing a class of first-order fragment of
functional programs [28]. The first author of the present paper also proposed a composition
method for functional programs [20,21] by interpreting attribute grammar composition
in a functional setting. These refined methods allow compositions under a more relaxed
condition than the AG composition: they can compose two transformationsT1 followed
by T2, if T1 is context-linear (linear in the use of inherited attributes, in terms of attribute
grammars) andT2 is recursion-linear (linear in the use of synthesized attributes). Being
not recursion-linear,T1 can recurse on the same node repeatedly; thusT1 is able to express
computation of higher complexity than AGs.

We notice that, however, there is no closure property under the relaxed condition (i.e.,
the result is neither context-linear nor recursion-linear in general). Hence the modular
development of transformation programs will be disabled. Furthermore, our program
generation scheme based on attribute dependency analysis would not immediately apply to
the results obtained by the above refined methods, since it crucially exploits the linearity
condition of AGs. It would be interesting to devise a program generation scheme for those
AGs which do not meet the linearity condition.

5.3. Bounded nesting depth of the input

Our transformer generator can only deal with transformations whose input is
presupposed to have a finite bound on the nesting depth. It is very desirable for XML
transformers to be able to process inputs of arbitrary nesting depth, since this includes a
significant family of XML languages such as XHTML.

There are two problems in dealing with XML inputs which have no presupposed bound
on the nesting depth. The fundamental problem is that the AG composition does not
allow the use of stack or similar data structures. Recently the second author proposed a
composition method forstack-attributed tree transducers, which are a formal counterpart
of attribute grammars that allows stack-like data structures as attribute values [17]. His
method enables us to write the parsing transformation for arbitrary nested inputs and to
compose it with other transformations. (It is also proved that the closure property holds
for the composition method.) Based on the refined composition method, he designed an
XML transformation language, called XTiSP [18,34]. An XTiSP program is translated
into an attribute grammar, which is then turned into an XML stream transformer. However,
the graph-based analysis inSection 3.1.1does not apply, because stack values allow
attributes to depend on two or more other attributes. This problem is not solved even by the
delayed graph merging inSection 3.2, since the number of dependent attributes would vary
dynamically as the length of the stack grows and shrinks. XTiSP circumvents the problem
by postponing the graph merging process to the execution time of the XML transformation.

Another problem caused by the bounded nesting depth is the non-regularity of XML.
We were able to substantially reduce the state space by taking a product of the produced
state transition machine and the automaton induced from the given schema information
(Section 3.3). However, the language of XML with no nesting bound forms a context-free
language, which does not have the automata counterpart. Segoufin and Viannu’s automata
construction method for XML validation [25] may solve this problem, where their method
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can be used to obtain an automaton that approximates the language specified by an arbitrary
schema.

5.4. Flexible addressing mechanism

AGs are often too primitive to specify complicated transformation tasks. This is due to
their limited ability in addressing nodes in the tree structure. In AGs, different nodes can
only communicate via the least common ancestor node, and therefore the communication
between remote distant nodes is often expressed in a very awkward way. In contrast,
popular XML transformation languages provide an advanced addressing mechanism such
as XPath [32].

It would be very useful if our transformation definition language allows such a flexible
addressing mechanism. XTiSP by the second author makes it possible to translate a
restricted class of XPath expressions into AGs. Olteanu et al. [23] proposed a translation
scheme from absolute XPath expressions into those without reverse references (i.e.,
references to ancestor/preceding sibling nodes). These may add an extra flexibility in
specifying complicated transformations in AGs.
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Appendix A. The attribute grammar composition algorithm

The descriptional composition algorithm by Ganzinger and Giegerich [11] for
composing two AGs is presented. This short section presents a summary of the algorithm
through a simple example. For a formal description of the algorithm, readers are referred
to the literature [11,4,5].

As an example, we consider the fusion ofUnparse◦ Parse, where the definitions of
ParseandUnparsetransformations are given inFig. 3 andFig. 7, resp. For the sake of
simplicity, we assume the maximum nesting depth of the input is 2.

Following the presentation in [5], we present the composition process in three
steps:projection, symbolic evaluation, and renaming. The projection step derives an
intermediate representation of the composed AG. Next, thesymbolic evaluationstep
eliminates the intermediate data structure, namely the XML tree produced between the
two transformationsUnparseandParsein the present example. Finally, therenamingstep
turns the intermediate representation into an AG representation.

Projection. The first step isprojection, which derives an intermediate representation of
the synthesized AG, where the intermediate data constructions between the two AGs are
not eliminated yet.

To obtain the intermediate representation, we create new set of semantic rules by
projecting every attribute ofUnparseover each semantic rule fromParse. That is, for
every ruleN.a = e in Parseand every synthesized (inherited, resp.) attributeb of Unparse,
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except for the special attributeresult, we have a new rule(N.a).b = e.b (e.b = (N.a).b,
resp.). For example, projecting every attribute ofUnparseover a semantic ruleE.parse=
Node $tagE1.parse E1.stk1 from the production ruleE → Begin $tagE1 of Parse, we
obtain the following new semantic rules:

(∗)
(E.parse).unparse= (Node $tagE1.parse E1.stk1).unparse

(Node $tagE1.parse E1.stk1).acc = (E.parse).acc

The start production is treated differently from the others. First, the semantic rule
S.result = e for the start production ofParse is removed from the semantic rules and
the projection algorithm is applied to the rest of the semantic rules as is done for the other
production rules. Then, the semantic rules for the start productionS → T of Unparseare
added to the semantic rules ofParseand every reference to an attributea of Unparseof the
form T.a is replaced bye.a. When applied to the running example, the projection yields
the following new semantic rules for the start productionS→ E.

S.result= (E.parse).unparse

(E.parse).acc= Nil

The underlined expressions originate fromT.unparseandT.acc, resp., in semantic rules
for the start production ofUnparse. In this particular case, there are no projected rules
from Parse, since no attribute other thanresult is defined in the semantic rules for the start
production ofParse.

Symbolic Evaluation. The second step issymbolic evaluation[5], which eliminates ex-
pressions of the form(C e1 · · · ek).a, which stands for attribution on the intermediate data.

In the above projected semantic rules(∗), we can find that there are occurrences of the
same expression of intermediate data construction (i.e., the underlined ones). Considering
an instance of the semantic rules for theNode production, where

T = Node $tagE1.parse E1.stk1, T1 = E1.parse, and T2 = E1.stk1,

we obtain the following semantic rules corresponding to the intermediate data construction.

(∗∗)

(Node $tagE1.parse E1.stk1).unparse= Begin $tag((E1.parse).unparse)

(E1.parse).acc = End $tag((E1.stk1).unparse)

(E1.stk1).acc = (Node $tagE1.parse E1.stk1).acc

Merging (∗) and(∗∗) and dismissing the underlined expressions by the transitivity of
equality, we can cancel the intermediate data construction and obtain the following new set
of semantic rules for theBegin production rule.

E → Begin $tagE1:

(E.parse).unparse= Begin $tag((E1.parse).unparse)

(E1.parse).acc = End $tag((E1.stk1).unparse)

(E1.stk1).acc = (E.parse).acc

Repeating the above rewriting process, we can eliminate all the expressions of
intermediate data construction.
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S → E:
S.result = E.parse_unparse;
E.parse_acc = Nil;

E → Begin $tagE1:
E.parse_unparse= Begin $tagE1.parse_unparse;
E.stk1_unparse= E1.stk2_unparse;
E1.parse_acc = End $tagE1.stk1_unparse;
E1.stk1_acc = E.parse_acc;
E1.stk2_acc = E.stk1_acc;

E → End $tagE1:
E.parse_unparse= E.parse_acc;
E.stk1_unparse= E1.parse_unparse;
E.stk2_unparse= E1.stk1_unparse;
E1.parse_acc = E.stk1_acc;
E1.stk1_acc = E.stk2_acc;

E → PCDATA $cdataE1:
E.parse_unparse= PCDATA $cdataE.parse_acc;
E.stk1_unparse= E1.skt1_unparse;
E.stk2_unparse= E1.stk2_unparse;
E1.parse_acc = E.parse_acc;
E1.stk1_acc = E.stk1_acc;
E1.stk2_acc = E.stk2_acc;

E → Nil:
E.parse_unparse= E.parse_acc;

Fig. A.1. The result of composition ofUnparse◦ Parse.

Renaming. The final step of the composition algorithm isrenaming. This step rewrites
every successive attribution of the form(T.a).b to a single attributeT.a_b, where the
successive attributions bya andb are replaced with a single concatenated attributiona_b.
For example, the above result of the symbolic evaluation rewrites to the following:

E → Begin $tagE1:

E.parse_unparse= Begin $tagE1.parse_unparse

E1.parse_acc = End $tagE1.stk1_unparse

E1.stk1_acc = E.parse_acc

Fig. A.1 shows the result of composition ofUnparse◦ Parse. It is easy to check that
this composition result works as an identity transformation for the input of bounded nesting
depth 2.
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Appendix B. VIEW: An XHTML view generator

The definition of VIEW transformation is given inFig. B.1. VIEW generates an
XHTML view of a stock quotes list. When it is applied to the stock quotes list inFig. 5(a),
it generates an XHTML table as shown below.

<?xml version="1.0">
<html>
<head>

<title>Virtual Stock Ticker</title>
</head>
<body>

<h1>Virtual Stock Ticker</h1>
<table>

<tr>
<th>Symbol</th> <th>Price</th> <th>Change</th> <th>Volume</th>

</tr>
<tr>

S → T:
S.result = Node “html”

(Node “head”
(Node “title” (Content “VisualStockTicker”) Empty)

(Node “body”
(Node “h1” (Content “VisualStockTicker”) Empty
(Node “table”

(Node “tr”
(Node “th” (Content “Symbol”)
(Node “th” (Content “Price”)
(Node “th” (Content “Change”)
(Node “th” (Content “Volume”) Empty))))

T.html ) Empty)) Empty)) Empty;

T → Node $tag T1 T2:
IF ( $tag= “stock_quotes” ) THEN

T.html = T1.html;
ELSE IF ( $tag= “stock_quote” ) THEN

T.html = Node “tr” T1.html T2.html;
ELSE IF ( $tag= “symbol” || $tag= “price”

|| $tag= “change” || $tag= “volume” ) THEN
T.html = Node “td” T1.html T2.html;

ELSE
T.html = T2.html;

ENDIF

T → Content $cdata:
T.html = Content $cdata;

T → Empty:
T.html = Empty;

Fig. B.1. Definition ofVIEW transformation.
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<td>RIMS</td> <td>32.23</td> <td>2.17</td> <td>13993600</td>
</tr>

and many more...

</table>
</body>
</html>
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