86,412 research outputs found

    SD-GAN: Semantic Decomposition for Face Image Synthesis with Discrete Attribute

    Full text link
    Manipulating latent code in generative adversarial networks (GANs) for facial image synthesis mainly focuses on continuous attribute synthesis (e.g., age, pose and emotion), while discrete attribute synthesis (like face mask and eyeglasses) receives less attention. Directly applying existing works to facial discrete attributes may cause inaccurate results. In this work, we propose an innovative framework to tackle challenging facial discrete attribute synthesis via semantic decomposing, dubbed SD-GAN. To be concrete, we explicitly decompose the discrete attribute representation into two components, i.e. the semantic prior basis and offset latent representation. The semantic prior basis shows an initializing direction for manipulating face representation in the latent space. The offset latent presentation obtained by 3D-aware semantic fusion network is proposed to adjust prior basis. In addition, the fusion network integrates 3D embedding for better identity preservation and discrete attribute synthesis. The combination of prior basis and offset latent representation enable our method to synthesize photo-realistic face images with discrete attributes. Notably, we construct a large and valuable dataset MEGN (Face Mask and Eyeglasses images crawled from Google and Naver) for completing the lack of discrete attributes in the existing dataset. Extensive qualitative and quantitative experiments demonstrate the state-of-the-art performance of our method. Our code is available at: https://github.com/MontaEllis/SD-GAN.Comment: 16 pages, 12 figures, Accepted by ACM MM202

    MoFaNeRF: Morphable Facial Neural Radiance Field

    Full text link
    We propose a parametric model that maps free-view images into a vector space of coded facial shape, expression and appearance with a neural radiance field, namely Morphable Facial NeRF. Specifically, MoFaNeRF takes the coded facial shape, expression and appearance along with space coordinate and view direction as input to an MLP, and outputs the radiance of the space point for photo-realistic image synthesis. Compared with conventional 3D morphable models (3DMM), MoFaNeRF shows superiority in directly synthesizing photo-realistic facial details even for eyes, mouths, and beards. Also, continuous face morphing can be easily achieved by interpolating the input shape, expression and appearance codes. By introducing identity-specific modulation and texture encoder, our model synthesizes accurate photometric details and shows strong representation ability. Our model shows strong ability on multiple applications including image-based fitting, random generation, face rigging, face editing, and novel view synthesis. Experiments show that our method achieves higher representation ability than previous parametric models, and achieves competitive performance in several applications. To the best of our knowledge, our work is the first facial parametric model built upon a neural radiance field that can be used in fitting, generation and manipulation. The code and data is available at https://github.com/zhuhao-nju/mofanerf.Comment: accepted to ECCV2022; code available at http://github.com/zhuhao-nju/mofaner

    HeadGAN: one-shot neural head synthesis and editing

    Get PDF
    Recent attempts to solve the problem of head reenactment using a single reference image have shown promising results. However, most of them either perform poorly in terms of photo-realism, or fail to meet the identity preservation problem, or do not fully transfer the driving pose and expression. We propose HeadGAN, a novel system that conditions synthesis on 3D face representations, which can be extracted from any driving video and adapted to the facial geometry of any reference image, disentangling identity from expression. We further improve mouth movements, by utilising audio features as a complementary input. The 3D face representation enables HeadGAN to be further used as an efficient method for compression and reconstruction and a tool for expression and pose editing

    VITON: An Image-based Virtual Try-on Network

    Full text link
    We present an image-based VIirtual Try-On Network (VITON) without using 3D information in any form, which seamlessly transfers a desired clothing item onto the corresponding region of a person using a coarse-to-fine strategy. Conditioned upon a new clothing-agnostic yet descriptive person representation, our framework first generates a coarse synthesized image with the target clothing item overlaid on that same person in the same pose. We further enhance the initial blurry clothing area with a refinement network. The network is trained to learn how much detail to utilize from the target clothing item, and where to apply to the person in order to synthesize a photo-realistic image in which the target item deforms naturally with clear visual patterns. Experiments on our newly collected Zalando dataset demonstrate its promise in the image-based virtual try-on task over state-of-the-art generative models

    Using Photorealistic Face Synthesis and Domain Adaptation to Improve Facial Expression Analysis

    Full text link
    Cross-domain synthesizing realistic faces to learn deep models has attracted increasing attention for facial expression analysis as it helps to improve the performance of expression recognition accuracy despite having small number of real training images. However, learning from synthetic face images can be problematic due to the distribution discrepancy between low-quality synthetic images and real face images and may not achieve the desired performance when the learned model applies to real world scenarios. To this end, we propose a new attribute guided face image synthesis to perform a translation between multiple image domains using a single model. In addition, we adopt the proposed model to learn from synthetic faces by matching the feature distributions between different domains while preserving each domain's characteristics. We evaluate the effectiveness of the proposed approach on several face datasets on generating realistic face images. We demonstrate that the expression recognition performance can be enhanced by benefiting from our face synthesis model. Moreover, we also conduct experiments on a near-infrared dataset containing facial expression videos of drivers to assess the performance using in-the-wild data for driver emotion recognition.Comment: 8 pages, 8 figures, 5 tables, accepted by FG 2019. arXiv admin note: substantial text overlap with arXiv:1905.0028

    3D Face Synthesis Driven by Personality Impression

    Full text link
    Synthesizing 3D faces that give certain personality impressions is commonly needed in computer games, animations, and virtual world applications for producing realistic virtual characters. In this paper, we propose a novel approach to synthesize 3D faces based on personality impression for creating virtual characters. Our approach consists of two major steps. In the first step, we train classifiers using deep convolutional neural networks on a dataset of images with personality impression annotations, which are capable of predicting the personality impression of a face. In the second step, given a 3D face and a desired personality impression type as user inputs, our approach optimizes the facial details against the trained classifiers, so as to synthesize a face which gives the desired personality impression. We demonstrate our approach for synthesizing 3D faces giving desired personality impressions on a variety of 3D face models. Perceptual studies show that the perceived personality impressions of the synthesized faces agree with the target personality impressions specified for synthesizing the faces. Please refer to the supplementary materials for all results.Comment: 8pages;6 figure
    • …
    corecore