2,797 research outputs found

    Acoustoelectric studies in cadmium sulphide thin films

    Get PDF
    Mechanical properties of the substrate are shown to exert a primary influence on surface wave propagation in vapour deposited Cadmium Sulphide thin film structures. The implications of substrate anisotropy are numerically explored, and it is shown to be an adequate approximation to regard a suitably oriented CdS-on-Sapphire system as mechanically isotropic with respect to waveguide dispersion.Acoustoelectric coupling dispersion is discussed within an acoustic ray waveguide framework, and it is concluded that no theoretical objection exists to obtaining thin film acoustic surface wave gain rates comparable to those currently obtained in single crystal bulk wave amplifiers.Thermodynamic stabilization is shown to be prerequisite to the successful operation of high field CdS thin film devices. Available techniques for the suppression of impurity and secondary phase effects are discussed, and a post - evaporation heat treatment procedure, aimed both at compensation of native atom astoichiometries and at drift mobility enhancement through copper recrystallization catalysis is described.Observations of thin film high field photocurrent saturation, post- threshold localized field redistribution and acoustoelectric bunching-type noise are diagnosed as characterizing inhomogeneous low gain rate surface wave noise amplification processes

    Light Trapping in Plasmonic Solar Cells

    Get PDF
    Subwavelength nanostructures enable the manipulation and molding of light in nanoscale dimensions. By controlling and designing the complex dielectric function and nanoscale geometry we can affect the coupling of light into specific active materials and tune macroscale properties such as reflection, transmission, and absorption. Most solar cell systems face a trade-off with decreasing semiconductor thickness: reducing the semiconductor volume increases open circuit voltages, but also decreases the absorp- tion and thus the photocurrent. Light trapping is particularly critical for thin-film amorphous Si (a-Si:H) solar cells, which must be made less than optically thick to enable complete carrier collection. By enhancing absorption in a given semiconductor volume, we can achieve high efficiency devices with less than 100 nm of active region. In this thesis we explore the use of designed plasmonic nanostructures to couple incident sunlight into localized resonant modes and propagating waveguide modes of an ultrathin semiconductor for enhanced solar-to-electricity conversion. We begin by developing computational tools to analyze incoupling from sunlight to guided modes across the solar spectrum and a range of incident angles. We then show the potential of this method to result in absorption enhancements beyond the limits for thick film solar cells. The second part of this thesis describes the integration of plasmonic nanos- tructures with a-Si:H solar cells, showing that designed nanostructures can lead to enhanced photocurrent over randomly textured light trapping surfaces, and develops a computational model to accurately simulate the absorption in these structures. The final chapter discusses the fabrication of a high-efficiency (9.5%) solar cell with a less than 100 nm absorber layer and broadband, angle isotropic photocurrent enhance- ment. Moreover, we discuss general design rules where light trapping nanopatterns are defined by their spatial coherence spectral density.</p

    Ellipsometry and differential interference contrast microscopic imaging of cellular exoand endocytosis: modelling and experiments

    Get PDF
    In this work it is presented a solution to Maxwell’s equations for core-shell nanoparticle scattering near an isotropic substrate covered with an anisotropic thin film, based on an extension of the Bobbert-Vlieger (BV) solution for particle scattering near a substrate, delivering an exact solution in the near-field as well as far-field. It is applied successfully the developed scattering model to the calculation of light scattering on an optical model representing a lipid vesicle near a lipid bilayer, whereby the lipids are characterized through a uniaxial optical model. Hereby, it is paved the path for understanding quantitatively how light scatters during a cellular exo- or endocytosis event during microscopic observation taking into account lipid induced anisotropy. Through the application of ellipsometry angles it is effectively demonstrated that realistically small optical anisotropy values significantly alter far-field optical scattering in respect to an equivalent optical model for cellular endocytosis consisting of isotropic components only. It is then calculated the impact of lipid-induced optical anisotropy on the experimental observation of exo- or endocytic microscopic imaging with e.g. Differential Interference Contrast (DIC) microscopy. Furthermore, it is integrated this extended BV scattering solution into a rigorous model of DIC image formation which allows for characterizing DIC, through simulation, as a tool for imaging of exo- or endocytosis events. It is also compared theoretical predictions with experimental high Numerical Aperture (NA) dic imaging of dielectric oxide nanoparticles with organic shell

    Device oriented experimental investigation of the alignment of liquid crystals

    Get PDF

    Nanoscale studies of domain wall motion in epitaxial ferroelectric thin films

    Full text link
    Atomic force microscopy was used to investigate ferroelectric switching and nanoscale domain dynamics in epitaxial PbZr0.2Ti0.8O3 thin films. Measurements of the writing time dependence of domain size reveal a two-step process in which nucleation is followed by radial domain growth. During this growth, the domain wall velocity exhibits a v ~ exp[-(1/E)^mu] dependence on the electric field, characteristic of a creep process. The domain wall motion was analyzed both in the context of stochastic nucleation in a periodic potential as well as the canonical creep motion of an elastic manifold in a disorder potential. The dimensionality of the films suggests that disorder is at the origin of the observed domain wall creep. To investigate the effects of changing the disorder in the films, defects were introduced during crystal growth (a-axis inclusions) or by heavy ion irradiation, producing films with planar and columnar defects, respectively. The presence of these defects was found to significantly decrease the creep exponent mu, from 0.62 - 0.69 to 0.38 - 0.5 in the irradiated films and 0.19 - 0.31 in the films containing a-axis inclusions.Comment: 13 pages, 15 figures, to be published in J. App. Phys. special issue on ferroelectric

    Plasmonic Waveguide Lithography for Patterning Nanostructures with High Aspect-Ratio and Large-Area Uniformity

    Full text link
    The rapid development of the semiconductor industry in the past decades has driven advances in nano-manufacturing technologies towards higher resolution, higher throughput, better large-area uniformity, and lower manufacturing cost. Along with these advancements, as the size of the devices approaches tens of nanometers, challenges in patterning technology due to limitations in physics, equipment and cost have quickly arisen. To solve these problems, unconventional lithography systems have attracted considerable interest as promising candidates to overcome the diffraction limit. One recently evolved technology, plasmonic lithography, can generate subwavelength features utilizing surface plasmon polaritons (SPPs). Evanescent waves generated by the subwavelength features can be transmitted to the photoresist (PR) using plasmonic materials. Another approach of plasmonic lithography involves the use of hyperbolic metamaterial (HMM) structures, which have been studied intensively because of their unique electromagnetic properties. Specifically, epsilon near zero (ENZ) HMMs offer the potential to produce extremely small features due to their high optical anisotropy. Despite the advancements in plasmonic lithography, several key issues impede progress towards more practical application, which includes shallow pattern depth (due to the evanescent nature of SPPs), non-uniformity over a large area (due to the interference of multiple diffraction orders) and high sensitivity of the roughness on the films and defects on the mask. The light intensity in the PR is very weak which results in an extremely long exposure time. To this end, this dissertation is dedicated to plasmonic lithography systems based on SPP waveguides and ENZ HMMs for patterning nanostructures with high aspect-ratio and large-area uniformity. New schemes are exploited in this thesis to address these challenges. Lithography systems based on a specially designed waveguide and an ENZ HMM are demonstrated. By employing the spatial filtering properties of the waveguide and the ENZ HMM, the period, linewidth and height of the patterns can be well controlled according to various design purposes. Periodic structures were achieved in both systems with a half-pitch of approximately 50 ~ 60 nm, which is 1/6 of the exposure wavelength of 405 nm. The thickness of the PR layer is around 100 ~ 250 nm, which gives an aspect-ratio higher than 2:1. The subwavelength patterns are uniform in cm2 areas. In addition to the design principle, various numerical simulations, fabrication conditions and corresponding results are discussed. The design principle can be generalized to other materials, structures and wavelengths. The real-world performance of the lithography system considering non-idealities such as line edge roughness and single point defect is analyzed. Comparisons between the plasmonic systems based on different design rules are also carried out, and the advantages of the spatial frequency selection principle is verified. The plasmonic waveguide lithography systems developed in this dissertation provide a technique to make deep subwavelength features with high aspect-ratio, large-area uniformity, high light intensity distribution, and low line-edge-roughness for practical applications. Compared with the previously reported results, the performance of plasmonic lithography is drastically improved. A plasmonic roller system combining the photo-roller system and plasmonic lithography is also developed. This plasmonic roller system can support a continuous patterning with a high throughput for cost sensitive applications. Several potential applications of the plasmonic materials including near field spin Hall effects and a particle based Lidar design are explored. Other advances towards plasmonic functional devices including silicon (Si) nanowire (NW) arrays, light-thermal converters and plasmonic lasers are also reported.PHDApplied PhysicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/144126/1/sxichen_1.pd

    Energy transfer between surface plasmon polariton modes with hybrid photorefractive liquid crystal cells

    No full text
    In this thesis, a hybrid photorefractive liquid crystal cell structure with the addition of a thin 40nm Gold layer is proposed that demonstrates significant photorefractive control of Surface Plasmon Polaritons (SPP). The photorefractive effects are generated through optically controlling the conductivity of a ~100nm photoconducting poly-N-vinyl-carboxyl (PVK) layer. Therefore, when a potential is applied across the cell, the liquid crystal alignment and the SPP wavevector is able to be controlled with light. The aim for developing this device is for the eventual demonstration of SPP gain to offset the high optical losses and increase the characteristically short propagation length of SPP. The mechanism we intend to use to demonstrate gain is analogous to the asymmetric energy transfer in a wave mixing system for two laser beams used to typically characterise photorefractive materials.We first characterise the electrical and optical behaviour of the novel photorefractive plasmonic structure proposed with uniform illumination. Our system demonstrates a good photorefractive wavevector shift of 0.207µm-1 for a 1.24eV SPP; this shift is in excess of the FWHM of the SPP resonance in the attenuated total reflection spectrum (0.154µm-1). However, the electric behaviour of the system is found to be highly complex and cannot be fully characterised by an equivalent electrical circuit. In addition, due to electronic stability issues, we require a slow AC potential to demonstrate consistent photorefractive effects.In a step towards realising SPP gain, we then consider the SPP interaction with a refractive index grating written into the liquid crystal layer with the interference pattern of crossed laser beams. We find that a SPP is diffracted into additional SPP modes. Our investigation then determines the ideal parameters that maximise the energy transfer by examining the diffraction efficiency dependence of each variable of the system. The maximum energy transfer observed is 25.3±2.3% for a 1.05eV SPP from a 4µm grating. With the assistance of a numerical simulation of our system we present a series of qualitative and semi-analytical descriptions to describe the mechanisms behind the observed trends. We discover that the diffraction efficiency is dependent of three important effects; the orientation of the grating, the penetration depth of the SPP into the liquid crystal and the magnitude of the periodic electric field in the liquid crystal. In addition, to fully describe the quantitative values observed we must also consider the presence of a thin 100nm region of the liquid crystal near the photoconductor interface that does not strongly respond to the applied electric field due to anchoring forces

    Optical modeling of organic electronic devices

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Physics, 2008.Includes bibliographical references (p. 51-53).Organic materials, with their superior photoluminescence and absorbance properties have revolutionized the technologies for displays and solar energy conversion. Due to the large transition dipoles, the localization of excited states or excitons in organic materials necessitates optical models that extend beyond classical far field methods. In this thesis we propose an extended near field calculation method using dyadic Green's functions and demonstrate the applications of both our extended model and traditional far field models for different types of devices such as surface plasmon detectors, cavity organic light emitting devices and organic photovoltaics with external antennas.by Kemal Celebi.S.M
    • …
    corecore