1 research outputs found

    An IF input continuous-time sigma-delta analog-digital converter with high image rejection.

    Get PDF
    Shen Jun-Hua.Thesis (M.Phil.)--Chinese University of Hong Kong, 2004.Includes bibliographical references (leaves 151-154).Abstracts in English and Chinese.Abstract --- p.ii摘要 --- p.ivAcknowledgments --- p.viTable of Contents --- p.viiList of Figures --- p.ixList of Tables --- p.xiiChapter Chapter 1 --- Introduction --- p.1Chapter 1.1. --- Overview --- p.1Chapter 1.2. --- Motivation and Objectives --- p.5Chapter 1.3. --- Original Contributions of This Work --- p.6Chapter 1.4. --- Organization of the Thesis --- p.7Chapter Chapter 2 --- Sigma-delta Modulation and IF A/D Conversion --- p.8Chapter 2.1. --- Introduction --- p.8Chapter 2.2. --- Fundamentals of Sigma-delta Modulation --- p.9Chapter 2.2.1. --- Feedback Controlled System --- p.9Chapter 2.2.2. --- Quantization Noise --- p.11Chapter 2.2.3. --- Oversampling and Noise-shaping --- p.11Chapter 2.2.4. --- Stability --- p.15Chapter 2.2.5. --- Noise Sources --- p.17Chapter 2.2.6. --- Baseband Sigma-delta Modulation --- p.28Chapter 2.2.7. --- Bandpass Sigma-delta Modulation --- p.28Chapter 2.3. --- Discrete-time Sigma-delta Modulation --- p.29Chapter 2.4. --- Continuous-time Sigma-delta Modulation --- p.29Chapter 2.5. --- IF-input Complex Analog to Digital Converter --- p.31Chapter 2.6. --- Image Rejection --- p.32Chapter 2.7. --- Integrated Mixer --- p.36Chapter Chapter 3 --- High Level Modeling and Simulation --- p.39Chapter 3.1. --- Introduction --- p.39Chapter 3.2. --- System Level Sigma-delta Modulator Design --- p.40Chapter 3.3. --- Continuous-time NTF Generation --- p.46Chapter 3.4. --- Discrete-time Sigma-delta Modulator Modeling --- p.50Chapter 3.5. --- Continuous-time Sigma-delta Modulator Modeling --- p.52Chapter 3.6. --- Modeling of Nonidealities --- p.53Chapter 3.7. --- High Level Simulation Results --- p.58Chapter Chapter 4 --- Transistor Level Implementation of the Complex Modulator and Layout --- p.65Chapter 4.1. --- Introduction --- p.65Chapter 4.2. --- IF Input Complex Modulator --- p.65Chapter 4.3. --- High IR IF Input Complex Modulator Design --- p.67Chapter 4.4. --- System Design --- p.73Chapter 4.5. --- Building Blocks Design --- p.77Chapter 4.5.1. --- Transconductor Design --- p.77Chapter 4.5.2. --- RC Integrator Design --- p.87Chapter 4.5.3. --- Gm-C Integrator Design --- p.90Chapter 4.5.4. --- Voltage to Current Converter --- p.95Chapter 4.5.5. --- Current Comparator Design --- p.96Chapter 4.5.6. --- Dynamic Element Matching Design --- p.98Chapter 4.5.7. --- Mixer Design --- p.100Chapter 4.5.8. --- Clock Generator --- p.103Chapter 4.6. --- Transistor Level Simulation of the Design --- p.106Chapter 4.7. --- Layout of the Mixed Signal Design --- p.109Chapter 4.7.1. --- Layout Overview --- p.109Chapter 4.7.2. --- Capacitor layout --- p.110Chapter 4.7.3. --- Resistor Layout --- p.113Chapter 4.7.4. --- Power and Ground Routing --- p.114Chapter 4.7.5. --- OTA Layout --- p.115Chapter 4.7.6. --- Chip Layout --- p.117Chapter 4.8. --- PostLayout Simulation --- p.120Chapter 5. --- Chapter 5 Measurement Results and Improvement --- p.122Chapter 5.1. --- Introduction --- p.122Chapter 5.2. --- PCB Design --- p.123Chapter 5.3. --- Test Setup --- p.125Chapter 5.4. --- Measurement of SNR and IRR --- p.128Chapter 5.5. --- Discussion of the Chip Performance --- p.131Chapter 5.6. --- Design of Robust Sigma Delta Modulator --- p.139Chapter Chapter 6 --- Conclusion --- p.148Chapter 6.1. --- Conclusion --- p.148Chapter 6.2. --- Future Work --- p.150Bibliography --- p.151Appendix A Schematics of Building Blocks --- p.155Author's Publications --- p.15
    corecore