212 research outputs found

    Multi-engine packet classification hardware accelerator

    Get PDF
    As line rates increase, the task of designing high performance architectures with reduced power consumption for the processing of router traffic remains important. In this paper, we present a multi-engine packet classification hardware accelerator, which gives increased performance and reduced power consumption. It follows the basic idea of decision-tree based packet classification algorithms, such as HiCuts and HyperCuts, in which the hyperspace represented by the ruleset is recursively divided into smaller subspaces according to some heuristics. Each classification engine consists of a Trie Traverser which is responsible for finding the leaf node corresponding to the incoming packet, and a Leaf Node Searcher that reports the matching rule in the leaf node. The packet classification engine utilizes the possibility of ultra-wide memory word provided by FPGA block RAM to store the decision tree data structure, in an attempt to reduce the number of memory accesses needed for the classification. Since the clock rate of an individual engine cannot catch up to that of the internal memory, multiple classification engines are used to increase the throughput. The implementations in two different FPGAs show that this architecture can reach a searching speed of 169 million packets per second (mpps) with synthesized ACL, FW and IPC rulesets. Further analysis reveals that compared to state of the art TCAM solutions, a power savings of up to 72% and an increase in throughput of up to 27% can be achieved

    Reconfiguration of field programmable logic in embedded systems

    Get PDF

    Energy Efficient Hardware Accelerators for Packet Classification and String Matching

    Get PDF
    This thesis focuses on the design of new algorithms and energy efficient high throughput hardware accelerators that implement packet classification and fixed string matching. These computationally heavy and memory intensive tasks are used by networking equipment to inspect all packets at wire speed. The constant growth in Internet usage has made them increasingly difficult to implement at core network line speeds. Packet classification is used to sort packets into different flows by comparing their headers to a list of rules. A flow is used to decide a packet’s priority and the manner in which it is processed. Fixed string matching is used to inspect a packet’s payload to check if it contains any strings associated with known viruses, attacks or other harmful activities. The contributions of this thesis towards the area of packet classification are hardware accelerators that allow packet classification to be implemented at core network line speeds when classifying packets using rulesets containing tens of thousands of rules. The hardware accelerators use modified versions of the HyperCuts packet classification algorithm. An adaptive clocking unit is also presented that dynamically adjusts the clock speed of a packet classification hardware accelerator so that its processing capacity matches the processing needs of the network traffic. This keeps dynamic power consumption to a minimum. Contributions made towards the area of fixed string matching include a new algorithm that builds a state machine that is used to search for strings with the aid of default transition pointers. The use of default transition pointers keep memory consumption low, allowing state machines capable of searching for thousands of strings to be small enough to fit in the on-chip memory of devices such as FPGAs. A hardware accelerator is also presented that uses these state machines to search through the payloads of packets for strings at core network line speeds

    Quantifying Shannon's Work Function for Cryptanalytic Attacks

    Full text link
    Attacks on cryptographic systems are limited by the available computational resources. A theoretical understanding of these resource limitations is needed to evaluate the security of cryptographic primitives and procedures. This study uses an Attacker versus Environment game formalism based on computability logic to quantify Shannon's work function and evaluate resource use in cryptanalysis. A simple cost function is defined which allows to quantify a wide range of theoretical and real computational resources. With this approach the use of custom hardware, e.g., FPGA boards, in cryptanalysis can be analyzed. Applied to real cryptanalytic problems, it raises, for instance, the expectation that the computer time needed to break some simple 90 bit strong cryptographic primitives might theoretically be less than two years.Comment: 19 page

    Implementation and Simulation of DS/CDMA System under Fade Channel

    Get PDF
    In this project, our focus lies on development of a baseband DSICDMA simulator which is of the same structure as the real hardware but much easier to understand. In addition, the project includes both software and hardware implementations of the DSICDMA modem which provides point-to-point communications between a station and a high speed mobile. The major blocks of the MATLABISimulink based simulator comply with the FPGA design of the hardware (Altera EPIS30B956). Suggestions for future work include verification of the simulator results against measurements of real data over a real communications link, and verifying and remodeling the channel model if necessary. This could be followed by point-to-multipoint or multipoint-to-multipoint communications applications, building up interactive data links
    corecore