26 research outputs found

    Spanning embeddings of arrangeable graphs with sublinear bandwidth

    Full text link
    The Bandwidth Theorem of B\"ottcher, Schacht and Taraz [Mathematische Annalen 343 (1), 175-205] gives minimum degree conditions for the containment of spanning graphs H with small bandwidth and bounded maximum degree. We generalise this result to a-arrangeable graphs H with \Delta(H)<sqrt(n)/log(n), where n is the number of vertices of H. Our result implies that sufficiently large n-vertex graphs G with minimum degree at least (3/4+\gamma)n contain almost all planar graphs on n vertices as subgraphs. Using techniques developed by Allen, Brightwell and Skokan [Combinatorica, to appear] we can also apply our methods to show that almost all planar graphs H have Ramsey number at most 12|H|. We obtain corresponding results for graphs embeddable on different orientable surfaces.Comment: 20 page

    An Extension of Ramsey\u27s Theorem to Multipartite Graphs

    Get PDF
    Ramsey Theorem, in the most simple form, states that if we are given a positive integer l, there exists a minimal integer r(l), called the Ramsey number, such any partition of the edges of K_r(l) into two sets, i.e. a 2-coloring, yields a copy of K_l contained entirely in one of the partitioned sets, i.e. a monochromatic copy of Kl. We prove an extension of Ramsey\u27s Theorem, in the more general form, by replacing complete graphs by multipartite graphs in both senses, as the partitioned set and as the desired monochromatic graph. More formally, given integers l and k, there exists an integer p(m) such that any 2-coloring of the edges of the complete multipartite graph K_p(m);r(k) yields a monochromatic copy of K_m;k . The tools that are used to prove this result are the Szemeredi Regularity Lemma and the Blow Up Lemma. A full proof of the Regularity Lemma is given. The Blow-Up Lemma is merely stated, but other graph embedding results are given. It is also shown that certain embedding conditions on classes of graphs, namely (f , ?) -embeddability, provides a method to bound the order of the multipartite Ramsey numbers on the graphs. This provides a method to prove that a large class of graphs, including trees, graphs of bounded degree, and planar graphs, has a linear bound, in terms of the number of vertices, on the multipartite Ramsey number

    Two Approaches to Sidorenko's Conjecture

    Full text link
    Sidorenko's conjecture states that for every bipartite graph HH on {1,,k}\{1,\cdots,k\}, (i,j)E(H)h(xi,yj)dμV(H)(h(x,y)dμ2)E(H)\int \prod_{(i,j)\in E(H)} h(x_i, y_j) d\mu^{|V(H)|} \ge \left( \int h(x,y) \,d\mu^2 \right)^{|E(H)|} holds, where μ\mu is the Lebesgue measure on [0,1][0,1] and hh is a bounded, non-negative, symmetric, measurable function on [0,1]2[0,1]^2. An equivalent discrete form of the conjecture is that the number of homomorphisms from a bipartite graph HH to a graph GG is asymptotically at least the expected number of homomorphisms from HH to the Erd\H{o}s-R\'{e}nyi random graph with the same expected edge density as GG. In this paper, we present two approaches to the conjecture. First, we introduce the notion of tree-arrangeability, where a bipartite graph HH with bipartition ABA \cup B is tree-arrangeable if neighborhoods of vertices in AA have a certain tree-like structure. We show that Sidorenko's conjecture holds for all tree-arrangeable bipartite graphs. In particular, this implies that Sidorenko's conjecture holds if there are two vertices a1,a2a_1, a_2 in AA such that each vertex aAa \in A satisfies N(a)N(a1)N(a) \subseteq N(a_1) or N(a)N(a2)N(a) \subseteq N(a_2), and also implies a recent result of Conlon, Fox, and Sudakov \cite{CoFoSu}. Second, if TT is a tree and HH is a bipartite graph satisfying Sidorenko's conjecture, then it is shown that the Cartesian product THT \Box H of TT and HH also satisfies Sidorenko's conjecture. This result implies that, for all d2d \ge 2, the dd-dimensional grid with arbitrary side lengths satisfies Sidorenko's conjecture.Comment: 20 pages, 2 figure

    Monochromatic bounded degree subgraph partitions

    Get PDF
    Abstract Let F = {F1,F2,...} be a sequence of graphs such that Fn is a graph on n vertices with maximum degree at most Δ. We show that there exists an absolute constant C such that the vertices of any 2-edge-colored complete graph can be partitioned into at most 2CΔlogΔ vertex disjoint monochromatic copies of graphs from F. If each Fn is bipartite, then we can improve this bound to 2CΔ; this result is optimal up to the constant C. © 2015 Elsevier B.V
    corecore