26 research outputs found

    Mixed-Criticality on the AFDX Network: Challenges and Potential Solutions

    Get PDF
    In this paper, we first assess the most relevant existing solutions enabling mixed-criticality on the AFDX and select the most adequate one. Afterwards, the specification of an extended AFDX, based on the Burst-Limiting Shaper (BLS), is detailed to fulfill the main avionics requirements and challenges. Finally, the preliminary evaluation of such a proposal is conducted through simulations. Results show its ability to guarantee the highest criticality traffic constraints, while limiting its impact on the current AFDX traffic

    Dataflow Analysis for Multiprocessor Systems with Non-Starvation-Free Schedulers

    Get PDF
    Dataflow analysis techniques are suitable for the temporal analysis of real-time stream processing applications. However, the applicability of these models is currently limited to systems with starvation-free schedulers, such as Time-Division Multiplexing (TDM) schedulers. Removal of this limitation would broaden the application domain of dataflow analysis techniques significantly. In this paper we present a temporal analysis technique for Homogeneous Synchronous Dataflow (HSDF) graphs, that is also applicable for systems with non-starvation-free schedulers. Unlike existing dataflow analysis techniques, the proposed analysis technique makes use of an enabling-jitter characterization and iterative fixed-point computation. The presented approach is applicable for arbitrary (cyclic) graph topologies. Buffer capacity constraints are taken into account during the analysis and sufficient buffer capacities can be determined afterwards. The approach presented in this paper is the first approach that considers non-starvation-free schedulers in combination with arbitrary HSDF graphs. The proposed dataflow analysis technique is implemented in a tool. This tool is used to evaluate the analysis technique using examples that illustrate some important differences with other temporal analysis methods. The case-study discusses how the method presented in this paper can be used to solve a problem with the inaccuracy of the temporal analysis results of a real-time stream processing system. This stream processing system consists of an FM receiver together with a DAB receiver application which both share a Digital Signal Processor (DSP)

    Configuration of in-vehicle embedded systems under real-time constraints

    Get PDF
    In-vehicle embedded systems typically consist of a set of nodes exchanging applicative data (signals) through a stack of communication protocols that includes a middleware layer. On each node, tasks, both applicative and middleware level, are subject to deadline constraints. Furthermore, signals must be produced sufficiently recently for being safely consumed on the receiver end (so-called freshness constraint). The goal of this study is to propose an approach for configuring nodes and communication protocols that takes these constraints into account. Precisely, the problem is, on the one hand, to set the characteristics of the middleware tasks and of the set of frames and, on the other hand, to find a feasible schedule on each node

    Response-Time Analysis for Task Chains in Communicating Threads

    Get PDF
    When modelling software components for timing analysis, we typically encounter functional chains of tasks that lead to precedence relations. As these task chains represent a functionally-dependent sequence of operations, in real-time systems, there is usually a requirement for their end-to-end latency. When mapped to software components, functional chains often result in communicating threads. Since threads are scheduled rather than tasks, specific task chain properties arise that can be exploited for response-time analysis. As a core contribution, this paper presents an extension of the busy-window analysis suitable for such task chains in static-priority preemptive systems. We evaluated the extended busy-window analysis in a compositional performance analysis using synthetic test cases and a realistic automotive use case showing far tighter response-time bounds than current approaches

    On the Convergence of the Holistic Analysis for EDF Distributed Systems

    Get PDF
    Dynamic scheduling techniques, and EDF (Earliest Deadline First) in particular, have demonstrated their ability to increase the schedulability of real time systems compared to fixed-priority scheduling. In distributed systems, the scheduling policies of the processing nodes tend to be the same as in stand-alone systems and, although few EDF networks exist, it is foreseen that dynamic scheduling will gradually develop into real-time networks. There are some response time analysis techniques for EDF scheduled distributed systems, mostly derived from the holistic analysis developed by Spuri. The convergence of the holistic analysis in context of EDF distributed systems with shared resources had not been studied until now. There is a circular dependency between tasks’ release jitter values, response times and preemption level ceilings of shared resources. In this paper we present an extension of Spuri’s algorithm and we demonstrate that its iterative formulas are non-decreasing, even in the presence of shared resources. This result enables us to assert that the new algorithm converges towards a solution for the response times of the tasks and messages in a distributed system

    A Generic Coq Proof of Typical Worst-Case Analysis

    Get PDF
    International audienceThis paper presents a generic proof of Typical Worst-Case Analysis (TWCA), an analysis technique for weakly-hard real-time uniprocessor systems. TWCA was originally introduced for systems with fixed priority preemptive (FPP) schedulers and has since been extended to fixed-priority nonpreemptive (FPNP) and earliest-deadline-first (EDF) schedulers. Our generic analysis is based on an abstract model that characterizes the exact properties needed to make TWCA applicable to any system model. Our results are formalized and checked using the Coq proof assistant along with the Prosa schedulability analysis library. Our experience with formalizing real-time systems analyses shows that this is not only a way to increase confidence in our claimed results: The discipline required to obtain machine checked proofs helps understanding the exact assumptions required by a given analysis, its key intermediate steps and how this analysis can be generalized

    220801

    Get PDF
    Multicore platforms are being increasingly adopted in Cyber-Physical Systems (CPS) due to their advantages over single-core processors, such as raw computing power and energy efficiency. Typically, multicore platforms use a shared memory bus that connects the cores to the off-chip main memory. This sharing of memory bus may cause tasks running on different cores to compete for access to the main memory whenever data/instructions are need to be read/written from/to the main memory. Such competition is problematic, as it may cause variations in the execution time of tasks in a non-deterministic way. To reduce the complexity of analysing this problem, the 3-phase task model was proposed that divides tasks' executions into distinct memory and execution phases. The distinctive memory phases are then scheduled to eliminate/minimize main memory contention between concurrently executing tasks. However, 3-phase tasks running on different cores may still compete to access the shared memory bus/main memory in order to execute memory phases. This paper presents a partitioned scheduling-based approach that allows one to derive memory bus contention-aware worst-case response time of tasks that follow the 3-phase task model. In particular, the bus-contention analysis is derived by considering two memory access models, i.e., (i) dedicated memory access model, where a core having allowed to access the main memory via memory bus is permitted to execute more than one memory phase, and (ii) fair memory access model, that restrict each core to execute only one memory phase in its allocated bus access. Both these models represent different system and application requirements, and the resulting bus contention of tasks may vary depending on the considered model. To evaluate the effectiveness of the proposed bus contention analysis, we compare its performance against an existing analysis in the state-of-the-art by performing (i) case-study experiments, using benchmarks from the Mälardalen Benchmark suite, and (ii) empirical evaluation using synthetic task sets. Results show that our proposed analysis can improve task set schedulability of 3-phase tasks by up to 88 percentage points.This work was partially supported by European Union’s Horizon 2020 -The EU Framework Programme for Research and Innovation 2014-2020, under grant agreement No. 732505. Project “TEC4Growth - Pervasive Intelligence, Enhancers and Proofs of Concept with Industrial Impact/NORTE-01-0145-FEDER000020” 845 financed by the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement; also by National Funds through FCT/MCTES (Portuguese Foundation for Science and Technology), within the CISTER Research Unit (UIDP/UIDB/04234/2020); by FCT and the Portuguese National Innovation Agency (ANI), under the CMU Portugal partnership, through the European Regional Development Fund (ERDF) of the Operational Competitiveness Programme and Internationaliza850 tion (COMPETE 2020), under the PT2020 Partnership Agreement, within project FLOYD (POCI-01-0247- FEDER-045912), also by FCT under PhD grant 2020.09532.BD.info:eu-repo/semantics/publishedVersio
    corecore