3 research outputs found

    Representation Learning based and Interpretable Reactor System Diagnosis Using Denoising Padded Autoencoder

    Full text link
    With the mass construction of Gen III nuclear reactors, it is a popular trend to use deep learning (DL) techniques for fast and effective diagnosis of possible accidents. To overcome the common problems of previous work in diagnosing reactor accidents using deep learning theory, this paper proposes a diagnostic process that ensures robustness to noisy and crippled data and is interpretable. First, a novel Denoising Padded Autoencoder (DPAE) is proposed for representation extraction of monitoring data, with representation extractor still effective on disturbed data with signal-to-noise ratios up to 25.0 and monitoring data missing up to 40.0%. Secondly, a diagnostic framework using DPAE encoder for extraction of representations followed by shallow statistical learning algorithms is proposed, and such stepwise diagnostic approach is tested on disturbed datasets with 41.8% and 80.8% higher classification and regression task evaluation metrics, in comparison with the end-to-end diagnostic approaches. Finally, a hierarchical interpretation algorithm using SHAP and feature ablation is presented to analyze the importance of the input monitoring parameters and validate the effectiveness of the high importance parameters. The outcomes of this study provide a referential method for building robust and interpretable intelligent reactor anomaly diagnosis systems in scenarios with high safety requirements

    Degradation stage classification via interpretable feature learning

    Get PDF
    Predictive maintenance (PdM) advocates for the usage of machine learning technologies to monitor asset's health conditions and plan maintenance activities accordingly. However, according to the specific degradation process, some health-related measures (e.g. temperature) may be not informative enough to reliably assess the health stage. Moreover, each measure needs to be properly treated to extract the information linked to the health stage. Those issues are usually addressed by performing a manual feature engineering, which results in high management cost and poor generalization capability of those approaches. In this work, we address this issue by coupling a health stage classifier with a feature learning mechanism. With feature learning, minimally processed data are automatically transformed into informative features. Many effective feature learning approaches are based on deep learning. With those, the features are obtained as a non-linear combination of the inputs, thus it is difficult to understand the input's contribution to the classification outcome and so the reasoning behind the model. Still, these insights are increasingly required to interpret the results and assess the reliability of the model. In this regard, we propose a feature learning approach able to (i) effectively extract high-quality features by processing different input signals, and (ii) provide useful insights about the most informative domain transformations (e.g. Fourier transform or probability density function) of the input signals (e.g. vibration or temperature). The effectiveness of the proposed approach is tested with publicly available real-world datasets about bearings' progressive deterioration and compared with the traditional feature engineering approach
    corecore