18,004 research outputs found

    The cosmic ray proton plus helium energy spectrum measured by the ARGO-YBJ experiment in the energy range 3-300 TeV

    Get PDF
    The ARGO-YBJ experiment is a full-coverage air shower detector located at the Yangbajing Cosmic Ray Observatory (Tibet, People's Republic of China, 4300 m a.s.l.). The high altitude, combined with the full-coverage technique, allows the detection of extensive air showers in a wide energy range and offer the possibility of measuring the cosmic ray proton plus helium spectrum down to the TeV region, where direct balloon/space-borne measurements are available. The detector has been in stable data taking in its full configuration from November 2007 to February 2013. In this paper the measurement of the cosmic ray proton plus helium energy spectrum is presented in the region 3-300 TeV by analyzing the full collected data sample. The resulting spectral index is γ=2.64±0.01\gamma = -2.64 \pm 0.01. These results demonstrate the possibility of performing an accurate measurement of the spectrum of light elements with a ground based air shower detector.Comment: 18 pages, 8 figures, preprint submitted to Phys. Rev.

    A new composition-sensitive parameter for Ultra-High Energy Cosmic Rays

    Get PDF
    A new family of parameters intended for composition studies in cosmic ray surface array detectors is proposed. The application of this technique to different array layout designs has been analyzed. The parameters make exclusive use of surface data combining the information from the total signal at each triggered detector and the array geometry. They are sensitive to the combined effects of the different muon and electromagnetic components on the lateral distribution function of proton and iron initiated showers at any given primary energy. Analytical and numerical studies have been performed in order to assess the reliability, stability and optimization of these parameters. Experimental uncertainties, the underestimation of the muon component in the shower simulation codes, intrinsic fluctuations and reconstruction errors are considered and discussed in a quantitative way. The potential discrimination power of these parameters, under realistic experimental conditions, is compared on a simplified, albeit quantitative way, with that expected from other surface and fluorescence estimators.Comment: 27 pages, 17 figures. Submitted to a refereed journa

    Experimental Study Using Functional Size Measurement in Building Estimation Models for Software Project Size

    Get PDF
    This paper reports on an experiment that investigates the predictability of software project size from software product size. The predictability research problem is analyzed at the stage of early requirements by accounting the size of functional requirements as well as the size of non-functional requirements. The experiment was carried out with 55 graduate students in Computer Science from Concordia University in Canada. In the experiment, a functional size measure and a project size measure were used in building estimation models for sets of web application development projects. The results show that project size is predictable from product size. Further replications of the experiment are, however, planed to obtain more results to confirm or disconfirm our claim

    Atmospheric neutron measurements with the SONTRAC science model

    Get PDF
    –The SOlar Neutron TRACking (SONTRAC) telescope was originally developed to measure the energy spectrum and incident direction of neutrons produced in solar flares, in the energy range 20 - 250 MeV. While developed primarily for solar physics, the SONTRAC detector may be employed in virtually any application requiring both energy measurement and imaging capabilities. The SONTRAC Science Model (SM) is presently being operated at the University of New Hampshire (UNH) as a ground-based instrument to investigate the energy spectrum, zenith and azimuth angle dependence of the cosmic-ray induced sea-level atmospheric neutron flux. SONTRAC measurements are based on the non-relativistic double scatter of neutrons off ambient protons within a block of scintillating fibers. Using the n-p elastic double-scatter technique, it is possible to uniquely determine the neutron’s energy and direction on an event-by-event basis. The 3D SM consists of a cube of orthogonal plastic scintillating fiber layers with 5 cm sides, read out by two CCD cameras. Two orthogonal imaging chains allow full 3D reconstruction of scattered proton tracks

    Measurement of the cosmic ray hadron spectrum up to 30 TeV at mountain altitude: the primary proton spectrum

    Get PDF
    The flux of cosmic ray hadrons at the atmospheric depth of 820 g/cm^2 has been measured by means of the EAS-TOP hadron calorimeter (Campo Imperatore, National Gran Sasso Laboratories, 2005 m a.s.l.). The hadron spectrum is well described by a single power law : S(E_h) = (2.25 +- 0.21 +- 0.34(sys)) 10^(-7)(E_h/1000)^(-2.79 +- 0.05) m^(-2) s^(-1) sr^(-1) GeV^(-1) over the energy range 30 GeV-30 TeV. The procedure and the accuracy of the measurement are discussed. The primary proton spectrum is derived from the data by using the CORSIKA/QGSJET code to compute the local hadron flux as a function of the primary proton spectrum and to calculate and subtract the heavy nuclei contribution (basing on direct measurements). Over a wide energy range E_0 = 0.5-50 TeV its best fit is given by a single power law : S(E_0) = (9.8 +- 1.1 +- 1.6(sys)) 10^(-5) (E_0/1000)^(-2.80 +- 0.06) m^(-2) s^(-1) sr^(-1) GeV^(-1). The validity of the CORSIKA/QGSJET code for such application has been checked using the EAS-TOP and KASCADE experimental data by reproducing the ratio of the measured hadron fluxes at the two experimental depths (820 and 1030 g/cm^2 respectively) at better than 10% in the considered energy range.Comment: 16 pages, 9 figures, accepted for publication in Astroparticle Physic

    Measurement of the Cosmic Ray Energy Spectrum and Composition from 10^{17} to 10^{18.3} eV Using a Hybrid Fluorescence Technique

    Get PDF
    We study the spectrum and average mass composition of cosmic rays with primary energies between 10^{17} eV and 10^{18} eV using a hybrid detector consisting of the High Resolution Fly's Eye (HiRes) prototype and the MIA muon array. Measurements have been made of the change in the depth of shower maximum as a function of energy. A complete Monte Carlo simulation of the detector response and comparisons with shower simulations leads to the conclusion that the cosmic ray intensity is changing f rom a heavier to a lighter composition in this energy range. The spectrum is consistent with earlier Fly's Eye measurements and supports the previously found steepening near 4 \times 10^{17} eV .Comment: 39 pages, 15 figures, in revtex4 epsf style, submited to AP

    Particle detection technology for space-borne astroparticle experiments

    Full text link
    I review the transfer of technology from accelerator-based equipment to space-borne astroparticle detectors. Requirements for detection, identification and measurement of ions, electrons and photons in space are recalled. The additional requirements and restrictions imposed by the launch process in manned and unmanned space flight, as well as by the hostile environment in orbit, are analyzed. Technology readiness criteria and risk mitigation strategies are reviewed. Recent examples are given of missions and instruments in orbit, under construction or in the planning phase.Comment: Technology and Instrumentation in Particle Physics 2014 (TIPP 2014), June 2-6, 2014, Amsterdam, The Netherland

    JUNO Conceptual Design Report

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is proposed to determine the neutrino mass hierarchy using an underground liquid scintillator detector. It is located 53 km away from both Yangjiang and Taishan Nuclear Power Plants in Guangdong, China. The experimental hall, spanning more than 50 meters, is under a granite mountain of over 700 m overburden. Within six years of running, the detection of reactor antineutrinos can resolve the neutrino mass hierarchy at a confidence level of 3-4σ\sigma, and determine neutrino oscillation parameters sin2θ12\sin^2\theta_{12}, Δm212\Delta m^2_{21}, and Δmee2|\Delta m^2_{ee}| to an accuracy of better than 1%. The JUNO detector can be also used to study terrestrial and extra-terrestrial neutrinos and new physics beyond the Standard Model. The central detector contains 20,000 tons liquid scintillator with an acrylic sphere of 35 m in diameter. \sim17,000 508-mm diameter PMTs with high quantum efficiency provide \sim75% optical coverage. The current choice of the liquid scintillator is: linear alkyl benzene (LAB) as the solvent, plus PPO as the scintillation fluor and a wavelength-shifter (Bis-MSB). The number of detected photoelectrons per MeV is larger than 1,100 and the energy resolution is expected to be 3% at 1 MeV. The calibration system is designed to deploy multiple sources to cover the entire energy range of reactor antineutrinos, and to achieve a full-volume position coverage inside the detector. The veto system is used for muon detection, muon induced background study and reduction. It consists of a Water Cherenkov detector and a Top Tracker system. The readout system, the detector control system and the offline system insure efficient and stable data acquisition and processing.Comment: 328 pages, 211 figure
    corecore