4,729 research outputs found

    An Experimental Study of Network Coded REST HTTP in Dynamic IoT Systems

    Full text link
    REST HTTP is the communication protocol of choice for software developers today. In IoT systems with unreliable connectivity, however, a stateless protocol like REST HTTP needs to send a request message multiple times, and it only stops the retransmissions when an acknowledgement arrives at the sender. In our previous work, we studied the usage of random linear network coding (RLNC) for REST HTTP protocol to reducing the amount of unnecessarily retransmissions. In this paper, we experimentally validate the study and analyze REST HTTP with and without RLNC in a simple testbed in dynamic IoT systems. The measurements show notable improvements in bandwidth utilization in terms of reducing the retransmissions and delay when using network-coded REST HTTP.Comment: 7 pages, 5 figures, accepted at IEEE International Conference on Communications (ICC), Dublin, Ireland, 202

    Detection for 5G-NOMA: An Online Adaptive Machine Learning Approach

    Full text link
    Non-orthogonal multiple access (NOMA) has emerged as a promising radio access technique for enabling the performance enhancements promised by the fifth-generation (5G) networks in terms of connectivity, low latency, and high spectrum efficiency. In the NOMA uplink, successive interference cancellation (SIC) based detection with device clustering has been suggested. In the case of multiple receive antennas, SIC can be combined with the minimum mean-squared error (MMSE) beamforming. However, there exists a tradeoff between the NOMA cluster size and the incurred SIC error. Larger clusters lead to larger errors but they are desirable from the spectrum efficiency and connectivity point of view. We propose a novel online learning based detection for the NOMA uplink. In particular, we design an online adaptive filter in the sum space of linear and Gaussian reproducing kernel Hilbert spaces (RKHSs). Such a sum space design is robust against variations of a dynamic wireless network that can deteriorate the performance of a purely nonlinear adaptive filter. We demonstrate by simulations that the proposed method outperforms the MMSE-SIC based detection for large cluster sizes.Comment: Accepted at ICC 201

    Detecting Irregular Patterns in IoT Streaming Data for Fall Detection

    Full text link
    Detecting patterns in real time streaming data has been an interesting and challenging data analytics problem. With the proliferation of a variety of sensor devices, real-time analytics of data from the Internet of Things (IoT) to learn regular and irregular patterns has become an important machine learning problem to enable predictive analytics for automated notification and decision support. In this work, we address the problem of learning an irregular human activity pattern, fall, from streaming IoT data from wearable sensors. We present a deep neural network model for detecting fall based on accelerometer data giving 98.75 percent accuracy using an online physical activity monitoring dataset called "MobiAct", which was published by Vavoulas et al. The initial model was developed using IBM Watson studio and then later transferred and deployed on IBM Cloud with the streaming analytics service supported by IBM Streams for monitoring real-time IoT data. We also present the systems architecture of the real-time fall detection framework that we intend to use with mbientlabs wearable health monitoring sensors for real time patient monitoring at retirement homes or rehabilitation clinics.Comment: 7 page

    A 64mW DNN-based Visual Navigation Engine for Autonomous Nano-Drones

    Full text link
    Fully-autonomous miniaturized robots (e.g., drones), with artificial intelligence (AI) based visual navigation capabilities are extremely challenging drivers of Internet-of-Things edge intelligence capabilities. Visual navigation based on AI approaches, such as deep neural networks (DNNs) are becoming pervasive for standard-size drones, but are considered out of reach for nanodrones with size of a few cm2{}^\mathrm{2}. In this work, we present the first (to the best of our knowledge) demonstration of a navigation engine for autonomous nano-drones capable of closed-loop end-to-end DNN-based visual navigation. To achieve this goal we developed a complete methodology for parallel execution of complex DNNs directly on-bard of resource-constrained milliwatt-scale nodes. Our system is based on GAP8, a novel parallel ultra-low-power computing platform, and a 27 g commercial, open-source CrazyFlie 2.0 nano-quadrotor. As part of our general methodology we discuss the software mapping techniques that enable the state-of-the-art deep convolutional neural network presented in [1] to be fully executed on-board within a strict 6 fps real-time constraint with no compromise in terms of flight results, while all processing is done with only 64 mW on average. Our navigation engine is flexible and can be used to span a wide performance range: at its peak performance corner it achieves 18 fps while still consuming on average just 3.5% of the power envelope of the deployed nano-aircraft.Comment: 15 pages, 13 figures, 5 tables, 2 listings, accepted for publication in the IEEE Internet of Things Journal (IEEE IOTJ

    Fog Computing in Medical Internet-of-Things: Architecture, Implementation, and Applications

    Full text link
    In the era when the market segment of Internet of Things (IoT) tops the chart in various business reports, it is apparently envisioned that the field of medicine expects to gain a large benefit from the explosion of wearables and internet-connected sensors that surround us to acquire and communicate unprecedented data on symptoms, medication, food intake, and daily-life activities impacting one's health and wellness. However, IoT-driven healthcare would have to overcome many barriers, such as: 1) There is an increasing demand for data storage on cloud servers where the analysis of the medical big data becomes increasingly complex, 2) The data, when communicated, are vulnerable to security and privacy issues, 3) The communication of the continuously collected data is not only costly but also energy hungry, 4) Operating and maintaining the sensors directly from the cloud servers are non-trial tasks. This book chapter defined Fog Computing in the context of medical IoT. Conceptually, Fog Computing is a service-oriented intermediate layer in IoT, providing the interfaces between the sensors and cloud servers for facilitating connectivity, data transfer, and queryable local database. The centerpiece of Fog computing is a low-power, intelligent, wireless, embedded computing node that carries out signal conditioning and data analytics on raw data collected from wearables or other medical sensors and offers efficient means to serve telehealth interventions. We implemented and tested an fog computing system using the Intel Edison and Raspberry Pi that allows acquisition, computing, storage and communication of the various medical data such as pathological speech data of individuals with speech disorders, Phonocardiogram (PCG) signal for heart rate estimation, and Electrocardiogram (ECG)-based Q, R, S detection.Comment: 29 pages, 30 figures, 5 tables. Keywords: Big Data, Body Area Network, Body Sensor Network, Edge Computing, Fog Computing, Medical Cyberphysical Systems, Medical Internet-of-Things, Telecare, Tele-treatment, Wearable Devices, Chapter in Handbook of Large-Scale Distributed Computing in Smart Healthcare (2017), Springe

    On the Fundamental Limits of Random Non-orthogonal Multiple Access in Cellular Massive IoT

    Get PDF
    Machine-to-machine (M2M) constitutes the communication paradigm at the basis of Internet of Things (IoT) vision. M2M solutions allow billions of multi-role devices to communicate with each other or with the underlying data transport infrastructure without, or with minimal, human intervention. Current solutions for wireless transmissions originally designed for human-based applications thus require a substantial shift to cope with the capacity issues in managing a huge amount of M2M devices. In this paper, we consider the multiple access techniques as promising solutions to support a large number of devices in cellular systems with limited radio resources. We focus on non-orthogonal multiple access (NOMA) where, with the aim to increase the channel efficiency, the devices share the same radio resources for their data transmission. This has been shown to provide optimal throughput from an information theoretic point of view.We consider a realistic system model and characterise the system performance in terms of throughput and energy efficiency in a NOMA scenario with a random packet arrival model, where we also derive the stability condition for the system to guarantee the performance.Comment: To appear in IEEE JSAC Special Issue on Non-Orthogonal Multiple Access for 5G System
    • …
    corecore