3 research outputs found

    From Procedures, Objects, Actors, Components, Services, to Agents -- A Comparative Analysis of the History and Evolution of Programming Abstractions

    Full text link
    The objective of this chapter is to propose some retrospective analysis of the evolution of programming abstractions, from {\em procedures}, {\em objects}, {\em actors}, {\em components}, {\em services}, up to {\em agents}, %have some compare concepts of software component and of agent (and multi-agent system), %The method chosen is to by replacing them within a general historical perspective. Some common referential with three axes/dimensions is chosen: {\em action selection} at the level of one entity, {\em coupling flexibility} between entities, and {\em abstraction level}. We indeed may observe some continuous quest for higher flexibility (through notions such as {\em late binding}, or {\em reification} of {\em connections}) and higher level of {\em abstraction}. Concepts of components, services and agents have some common objectives (notably, {\em software modularity and reconfigurability}), with multi-agent systems raising further concepts of {\em autonomy} and {\em coordination}. notably through the notion of {\em auto-organization} and the use of {\em knowledge}. We hope that this analysis helps at highlighting some of the basic forces motivating the progress of programming abstractions and therefore that it may provide some seeds for the reflection about future programming abstractions.Comment: This preprint has been published as a chapter of a book about the French school of programming, coordinated by Bertrand Meyer and published by Springer in 202

    Recent Advances in Multi Robot Systems

    Get PDF
    To design a team of robots which is able to perform given tasks is a great concern of many members of robotics community. There are many problems left to be solved in order to have the fully functional robot team. Robotics community is trying hard to solve such problems (navigation, task allocation, communication, adaptation, control, ...). This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field. It is focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. The book consists of 16 chapters introducing both basic research and advanced developments. Topics covered include kinematics, dynamic analysis, accuracy, optimization design, modelling, simulation and control of multi robot systems
    corecore