1,681 research outputs found

    An expectation transformer approach to predicate abstraction and data independence for probabilistic programs

    Full text link
    In this paper we revisit the well-known technique of predicate abstraction to characterise performance attributes of system models incorporating probability. We recast the theory using expectation transformers, and identify transformer properties which correspond to abstractions that yield nevertheless exact bound on the performance of infinite state probabilistic systems. In addition, we extend the developed technique to the special case of "data independent" programs incorporating probability. Finally, we demonstrate the subtleness of the extended technique by using the PRISM model checking tool to analyse an infinite state protocol, obtaining exact bounds on its performance

    Automatic Probabilistic Program Verification through Random Variable Abstraction

    Full text link
    The weakest pre-expectation calculus has been proved to be a mature theory to analyze quantitative properties of probabilistic and nondeterministic programs. We present an automatic method for proving quantitative linear properties on any denumerable state space using iterative backwards fixed point calculation in the general framework of abstract interpretation. In order to accomplish this task we present the technique of random variable abstraction (RVA) and we also postulate a sufficient condition to achieve exact fixed point computation in the abstract domain. The feasibility of our approach is shown with two examples, one obtaining the expected running time of a probabilistic program, and the other the expected gain of a gambling strategy. Our method works on general guarded probabilistic and nondeterministic transition systems instead of plain pGCL programs, allowing us to easily model a wide range of systems including distributed ones and unstructured programs. We present the operational and weakest precondition semantics for this programs and prove its equivalence

    Quantitative Safety: Linking Proof-Based Verification with Model Checking for Probabilistic Systems

    Full text link
    This paper presents a novel approach for augmenting proof-based verification with performance-style analysis of the kind employed in state-of-the-art model checking tools for probabilistic systems. Quantitative safety properties usually specified as probabilistic system invariants and modeled in proof-based environments are evaluated using bounded model checking techniques. Our specific contributions include the statement of a theorem that is central to model checking safety properties of proof-based systems, the establishment of a procedure; and its full implementation in a prototype system (YAGA) which readily transforms a probabilistic model specified in a proof-based environment to its equivalent verifiable PRISM model equipped with reward structures. The reward structures capture the exact interpretation of the probabilistic invariants and can reveal succinct information about the model during experimental investigations. Finally, we demonstrate the novelty of the technique on a probabilistic library case study

    Game Refinement Relations and Metrics

    Full text link
    We consider two-player games played over finite state spaces for an infinite number of rounds. At each state, the players simultaneously choose moves; the moves determine a successor state. It is often advantageous for players to choose probability distributions over moves, rather than single moves. Given a goal, for example, reach a target state, the question of winning is thus a probabilistic one: what is the maximal probability of winning from a given state? On these game structures, two fundamental notions are those of equivalences and metrics. Given a set of winning conditions, two states are equivalent if the players can win the same games with the same probability from both states. Metrics provide a bound on the difference in the probabilities of winning across states, capturing a quantitative notion of state similarity. We introduce equivalences and metrics for two-player game structures, and we show that they characterize the difference in probability of winning games whose goals are expressed in the quantitative mu-calculus. The quantitative mu-calculus can express a large set of goals, including reachability, safety, and omega-regular properties. Thus, we claim that our relations and metrics provide the canonical extensions to games, of the classical notion of bisimulation for transition systems. We develop our results both for equivalences and metrics, which generalize bisimulation, and for asymmetrical versions, which generalize simulation

    Quantitative program logic and expected time bounds in probabilistic distributed algorithms

    Get PDF
    AbstractIn this paper we show how quantitative program logic (Morgan et al., ACM Trans. Programming Languages Systems 18 (1996) 325) provides a formal framework in which to promote standard techniques of program analysis to a context where probability and nondeterminism interact, a situation common to probabilistic distributed algorithms. We show that overall expected time can be formulated directly in the logic and that it can be derived from local properties of components. We illustrate the methods with an analysis of expected running time of the probabilistic dining philosophers (Lehmann and Ravin, Proc 8th Annu. ACM. Symp. on principles of Programming Languages, ACM, New York, 1981, p. 133)

    A New Proof Rule for Almost-Sure Termination

    Get PDF
    An important question for a probabilistic program is whether the probability mass of all its diverging runs is zero, that is that it terminates "almost surely". Proving that can be hard, and this paper presents a new method for doing so; it is expressed in a program logic, and so applies directly to source code. The programs may contain both probabilistic- and demonic choice, and the probabilistic choices may depend on the current state. As do other researchers, we use variant functions (a.k.a. "super-martingales") that are real-valued and probabilistically might decrease on each loop iteration; but our key innovation is that the amount as well as the probability of the decrease are parametric. We prove the soundness of the new rule, indicate where its applicability goes beyond existing rules, and explain its connection to classical results on denumerable (non-demonic) Markov chains.Comment: V1 to appear in PoPL18. This version collects some existing text into new example subsection 5.5 and adds a new example 5.6 and makes further remarks about uncountable branching. The new example 5.6 relates to work on lexicographic termination methods, also to appear in PoPL18 [Agrawal et al, 2018
    corecore