
Theoretical Computer Science 282 (2002) 191–219
www.elsevier.com/locate/tcs

Quantitative program logic and expected time bounds
in probabilistic distributed algorithms

A.K. McIver ∗; 1

Programming Research Group, Oxford University Computing Laboratory, Wolfson Building,
Parks Road, Oxford, OX1 3QD, UK

Abstract

In this paper we show how quantitative program logic (Morgan et al., ACM Trans. Program-
ming Languages Systems 18 (1996) 325) provides a formal framework in which to promote
standard techniques of program analysis to a context where probability and nondeterminism in-
teract, a situation common to probabilistic distributed algorithms. We show that overall expected
time can be formulated directly in the logic and that it can be derived from local properties of
components. We illustrate the methods with an analysis of expected running time of the prob-
abilistic dining philosophers (Lehmann and Ravin, Proc 8th Annu. ACM. Symp. on principles
of Programming Languages, ACM, New York, 1981, p. 133). c© 2002 Published by Elsevier
Science B.V.

1. Introduction

Distributed systems consist of a number of independent components whose inter-
leaved behaviour typically generates much nondeterminism; the addition of probability
incurs an extra layer of complexity. Our principal aims here are to illustrate how,
using ‘quantitative program logic’ [15], familiar techniques from standard program-
ming paradigms easily extend to the probabilistic context, and that they can be used
to analyse not only correctness, but expected running times as well.
Our techniques use a quantitative logic interpreted over a probabilistic transition sys-

tem in which the expressions are real- (rather than Boolean-) valued functions of the
state. The transition system combines nondeterministic choice together with probabilis-
tic choice, making the following distinction between the two. Nondeterministic choice
represents some arbitrary selection between several possible programs. The selection

∗ Fax: +44-1865-273-839.
E-mail address: anabel@comlab.ox.ac.uk (A.K. McIver).
1 McIver is supported by the EPSRC.

0304-3975/02/$ - see front matter c© 2002 Published by Elsevier Science B.V.
PII: S0304 -3975(01)00049 -4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81966153?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

192 A.K. McIver / Theoretical Computer Science 282 (2002) 191–219

could depend on many criteria that are either unknown or irrelevant (at least for correct-
ness) and anyway are probably unquantiGable: nondeterminism abstracts from them all.
Modelling nondeterminism in this sense is crucial for the analysis of “true concurrency”
which is a recognised phenomenon of distributed systems, where the arbitrariness of
choice can be traced to unknown timing delays, for example. In this sense its behaviour
is diJerent to probabilistic choice: if the former represents “true concurrency”, the latter
represents “pure randomness”, which (unlike nondeterminism) we assume to be both
quantiGable and impervious to eccentricities prevailing in the environment.
Other authors [17, 3, 24] treat nondeterminism and probability in this way, and stan-

dard models of Markov decision processes [6] also have these attributes, where “non-
determinism” corresponds to the abstraction of “scheduling policies”, and indeed others
have drawn attention to the similarity [4].
The analysis of such systems (aside form temporal properties) is often operational,

whereas our approach has more similarities with Dijkstra=Hoare logic and wp-style rea-
soning. To make the quantitative logic expressive enough to encode information about
the probabilistic choices speciGed in the programs, we provide an interpretation in terms
of ‘probabilistic Hoare triples’ as follows. If A is a real-valued function of the state
and post is a predicate (over the state) then we say that the probabilistic Hoare triple

{A} prog {post}
is satis9ed provided that for all intial states s, the program prog establishes predicate
post with probability ‘at least A:s’ [15]. Because of nondeterminism ‘at least’ is usu-
ally the best that we can do, and is a robust estimate against all ways to resolve the
nondeterminism. We set out the details in terms of a probabilistic wp in Section 2.
There are several advantages to this formal approach. The Grst is its notational

clarity—as in ordinary program logic, properties (even if they are probabilistic) can
be described easily. Perhaps of greater consequence though is that the logic provides
a meticulous and pragmatic interface between the programming language and the un-
derlying mathematics, and mathematical properties can be deduced directly from the
program text. In programs that have nondeterminism and probability, that can very
often be an error-prone activity.
An additional and pleasant feature of the quantitative logic is the ease at which stan-

dard program techniques extend smoothly. (Examples include compositional reasoning,
�-calculus treatments of temporal logic and fairness which can be found in the general
literature [2, 12].) Many proofs reduce to simple arithmetical arguments which apply
not only to correctness, but to “performance” as well, since the extended type (of reals
rather than Booleans) encourages us to formulate and reason about both correctness
and “performance” within the same logical framework.
The techniques here signiGcantly expand the applicability of previous contributions

on this theme. Elsewhere [14] we gave �-calculus-style deGnitions of expected time
for a program to satisfy a set of states but unfortunately the context there is limited
and, in particular, is insuNcient to be applied to many distributed applications where
fairness is a major component to correctness arguments. One contribution of this paper

A.K. McIver / Theoretical Computer Science 282 (2002) 191–219 193

is to show how to augment those ideas with fairness; we test the ideas on the well-
known probabilistic dining philosophers [13] which has been extensively studied in
many works [17, 18] though none use Hoare-style logic.
We begin, in Section 2, by outlining the theoretical foundations on which our later

analyses depend. We deGne a model of probabilistic computation which is Oexible
enough to accommodate the kind of nondeterminism evident in distributed algorithms.
Once that is settled, we can ‘read oJ’ greatest and least event-probabilities via a prob-
abilistic program logic. In Section 3 we move on to performance, deGning it as the
the expected number of execution steps (of a Gxed program) needed until some goal
is realised; we show how this notion can be formulated as a Gxed point expression
in the logic. Next in Sections 4 and 5 we turn to practicalities and consider how to
reason under the imposition of ‘weak fairness’; that condition is vital for the correct-
ness of some algorithms however it presents some diNculties for performance. Finally
in Section 6, we test the the theory by analysing the randomised dining philosophers
[13]; we discover that no more than 34 steps are required for some philosopher to eat,
independently of the number seated at the dining table.
We uniformly use S for the state space and PS for discrete probability distributions

over S (normalised real-valued functions of S). We also use ‘:=’ for ‘is deGned to
be’ and ‘.’ for function application. We lift ordinary arithmetic operators pointwise
to operators between functions: addition (+); multiplication (×); maximum (�) and
minimum (�). For a real-valued function F and a scalar q we write qF for the function
‘the result of F scaled by factor q’. Other notation is introduced as needed.

2. Program logic and estimating probabilities

Operationally, we model probabilistic sequential programs [16, 10] (cf. also [3, 17])
as functions from (initial) state to sets of distributions (called ‘result sets’) over (Gnal)
states. Intuitively, that describes a computation proceeding in two (indivisible) stages:
a nondeterministic choice, immediately followed by a probabilistic choice, where the
probability refers to the possible Gnal states reachable from a given initial state. This
is an “abstract” combination of probability and nondeterminism—in principle, all dis-
tributed (concurrent) programs can be modelled as an element of HS, thus we use it
as a means to test soundness of our proof techniques.

De�nition 2.1. The space of probabilistic, demonic programs (HS; �) is deGned 2

HS := S → P PS:

2 In fact, the whole space S→P PS is not appropriate for modelling probabilistic programs, and we Gnd that
we must impose closure conditions on the result sets in order to model reasonable computational behaviour;
compactness is one such closure, and it guarantees feasibility of recursive deGnitions. The details of this
and the other closure conditions are set out elsewhere [16] and are unnecessary to understand the present
context.

194 A.K. McIver / Theoretical Computer Science 282 (2002) 191–219

We order programs P;Q∈HS:

P � Q iJ (∀s : S · P:s ⊇ Q:s):

The relation � (between programs)—program re9nement—classiGes programs in
terms of the extent of nondeterministic behaviour. Programs are more reGned than oth-
ers if they aJect reduced nondeterminism, and deterministic programs, the most reGned
programs of all, only engage in pure randomised computations. In this view nondeter-
minism can be understood as an abstraction of the mechanism underlying the arbitrary
selection over some range of probability distributions; however the agent making that
selection can only inOuence the weights of the probabilistic transitions, not their actual
resolution once those weights have been picked.
An alternative way to understand a program P in HS is as a Markov decision

process. P represents a set of available agent-strategies (or policies), each one cor-
responds to a probabilistic assignments in P:s for a given initial s. Once the agent
has settled on his strategy, the program evolves just like an ordinary Markov pro-
cess. Nondeterminism can therefore be construed as abstracting from all agent-
strategies.
Nondeterminism is often met as ‘abstraction’ in speciGcations, where the agent is

cast as a programmer as he chooses an implementation; but when the character of the
agent is demonic, adapting to the particular ‘run-time’ environment as he makes his
choice, his behaviour is identical to that of an ‘adversary scheduler’ assumed of many
distributed algorithms [17]. We shall discuss this application to schedulers in more
detail in Section 4.
Unlike other authors we shall not use the operational model for program anal-

ysis; as a concise description of computations it provides an invaluable means to
understand the probabilistic context, however in practice, we can do better by us-
ing the quantitative program logic introduced elsewhere [16]: it has an exact in-
terpretation over HS (and therefore relevant in the present computational setting)
and (as we shall see) forms the basis for an attractive analytical and speciGcation
tool.
The idea, Grst suggested by Kozen [11] for deterministic programs, is to extract

information about probabilistic computations by considering ‘expected values’. Ordi-
nary program logic [7] identiGes preconditions that guarantee post conditions; in con-
trast, for probabilistic programs, the probability, rather than the certainty of achiev-
ing a post condition is of interest, and Kozen’s insight was to formulate that as
the result of averaging certain real-valued functions of the state over the Gnal dis-
tributions determined by the program. Thus, the quantitative logic we use is an ex-
tension of Kozen’s (since our programs are both nondeterministic and probabilistic)
but is similarly based on expectations (real-valued functions of the state rather than
Boolean-valued predicates). We denote the space of expectations by ES(:= S→R),
and we deGne the semantics of a probabilistic program r as wp:r, an expectation
transformer [16].

A.K. McIver / Theoretical Computer Science 282 (2002) 191–219 195

De�nition 2.2. Let r : S→P(PS) be a program taking initial states in S to sets of Gnal
distributions over S. Then the least possible 3 pre-expectation at state s of program r,
with respect to post-expectation A in ES, is deGned

wp:r:A:s := �
{∫

F
A |F : r:s

}
;

where
∫
F A denotes the integral of A with respect to distribution F . 4

Another way to understand wp:r:A:s is the minimum expected cost over all agent-
strategies in a Markov decision process determined by r, and with respect to cost
function A; we postpone that discussion until Section 7.
In the special case that A is {0; 1}-valued—a characteristic expectation—we may

identify a predicate which is true exactly at those states where A evaluates to 1,
and then the above interpretation makes wp:r:A:s the least possible probability that
r terminates in a state satisfying that predicate. In more conventional notation still,
DeGnition 2.2 gives a precise meaning to the (probabilistic) Hoare triple

{wp:r:A} r {A}; (1)

where the triple is satisGed if r guarantees that A is established from initial state s
with probability at least wp:r:A:s.
To economise on notation we often pun a characteristic expectation with its associ-

ated predicate, saying that ‘s satisGes A’ when strictly speaking we mean A:s=1. The
context should dispel confusion, however. Other distinguished functions are the con-
stants 1 and 0 evaluating everywhere to 1 and 0; respectively, and thus corresponding
to true and false. We also write ¬A for the negation of A (equivalent to 1− A).

By taking the minimum over a set of distributions in DeGnition 2.2, we are adopting
the demonic interpretation for nondeterministic choice, and for many applications it is
the most useful, since it generalises the ‘for all’ modality of transition semantics [1].
Thus if wp:r:A:s = p say for some real p then all (probabilistic) transitions in r:s
ensure a probability of at least p of achieving A. In respect of program reGnement,
reducing the nondeterminism increases that least result.
We use probabilistic implication V, a relation between expectations, and with its

variants W and ≡, is deGned to extend ordinary Boolean implication:

V ‘everywhere no more than’

≡ ‘everywhere equal to’

W ‘everywhere no less than’:

3 This interpretation is the same as the greatest guaranteed pre-expectation used elsewhere [16].
4 In fact

∫
F A is just

∑
s:S �:s×F:s because S is Gnite and F is discrete [8]. We use the

∫
-notation because

it is less cluttered, and to be consistent with the more general case.

196 A.K. McIver / Theoretical Computer Science 282 (2002) 191–219

scaling t:(c′A)≡ c′(t:A)
constant distribution t:(A + c)≡ t:A + c
subadditive (t:A1) + (t:A2) V t:(A1 + A2)

feasibility �AV t:AV �A
continuity t:(�A)≡ (�A:A · t:A)
V-monotonicity A1 V A2 implies t:A1 V t:A2

The constants c; c′ are in R and c′ is nonnegative. The expectations A1; A2 are in ES. These properties are
collectively referred to as sublinearity. A transformer t is sublinear if and only if t = wp:r for some program
r in HS [15].

Fig. 1. Axioms of transformers corresponding to operational programs.

do nothing wp:skip:A :=A
assignment wp:(x :=E):A :=A[E=x]
probabilistic choice wp:(rp ⊕ r′):A :=p(wp:r:A) + (1− p)(wp:r′:A)
nondeterministic choice wp:(r[]r′):A :=wp:r:A�wp:r′:A
sequential composition wp:(r; r′):A :=wp:r:(wp:r′:A)
conditional choice wp:(r if B else r′):A :=B×wp:r:A + ¬B×wp:r′:A
re9nement r� r′ iJ (∀A∈ES · wp:r:AV wp:r′:A)

A is in ES and E is an expression in the program variables. The expression A[E=x] denotes replacement of
variable x by E in A. The real p satisGes 06 p6 1, and pA means ‘expectation A scaled by p’. Finally B
is Boolean-valued when it appears in a program statement but is interpreted as a {0; 1}-valued expectation
in the semantics.
The semantics is essentially the same as for ordinary predicate transformers [7] except for probabilistic choice,
which is deGned as the weighted average of the pre-expectations of its operands, and nondeterminism, which
is demonic and selects the minimum probability of success.

Fig. 2. Probabilistic wp semantics. Nondeterminism is interpreted demonically.

And now the above observations imply that given any A in ES,

r � r′ iJ wp:r:AV wp:r′:A: (2)

Here, rather than considering HS directly we study their realisation as transformers,
because in principle (again) all distributed programs can be considered as transformers
via DeGnition 2.2. In practice, we shall use wp formulations to generate annotations
of program text like (1) above, and Fig. 2 sets out how to do that for a simple pro-
gramming language, suitable for the application we consider here. The axiomatisation
of HS (in terms properties of transformers) is set out in Fig. 1.
Returning now to our application—expected time bounds— upper bounds have more

signiGcance; we deGne the dual of wp:r, generalising the ‘exists’ modality [1], interpret-
ing nondeterminism as maximum and thus angelically. (cf. upper and lower probability
estimates [3].)

A.K. McIver / Theoretical Computer Science 282 (2002) 191–219 197

De�nition 2.3. Let r : S→P(PS) be a program, taking initial states in S to sets of Gnal
distributions over S. Then the greatest possible pre-expectation at state s of program
r, with respect to post-expectation A in ES, is deGned

w̃p:r:A:s := �
{∫

F
A |F : r:s

}
:

The consequences of nondeterminism may seem a little strange at Grst, for exam-
ple for characteristic expectation A, we Gnd that wp:r:A+ wp:r:¬A can be less than 1,
apparently counter to the experience from probability theory where one would always
expect that the probability of the occurrence of either A or ¬A (that is the probabil-
ity of any event) is certain. The usual connection between the probability of A and
that of ¬A however can be recovered once we factor in the nature of angelic and
demonic nondeterminism: a small calculation from DeGnition 2.3 and 2.2 yields the
equality

w̃p:r:¬A+ wp:r:A ≡ 1; (3)

which conGrms the reasoning that in resolving the nondeterminism to maximise the
chance of terminating in ¬A (namely w̃p:r:¬A), the chance of terminating in A is at
the same time diminished to the minimum possible (namely wp:r:A).
An apt illustration of the utility of the logic is revealed in its treatment of non-

determinism—post-expectations are transformed in a goal-directed fashion and the de-
tails of mathematical proofs often reduce to simple arithmetic arguments. That last
point is formalised by ‘sublinearity’, summarised in Fig. 1, and the real surprise is
that these simple (sub)distribution properties characterise, in logical terms, ‘what it
is to be a probabilistic computation’; a transformer t is sublinear exactly when it
is equal to wp:r for some program r in HS [16], and theorems about transformers
whose proofs appeal only to sublinearity correspond to theorems about programs in
HS.
A is in ES and E is an expression in the program variables. The expression A[E=x]

denotes replacement of variable x by E in A. The real p satisGes 0 6 p 6 1,
and pA means ‘expectation A scaled by p’. Finally B is Boolean-valued when it
appears in a program statement but is interpreted as a {0; 1}-valued expectation in the
semantics.
The semantics is essentially the same as for ordinary predicate transformers [7]

except for probabilistic choice, which is deGned as the weighted average of the pre-
expectations of its operands, and nondeterminism, which is demonic and selects the
minimum probability of success.
We Gnish this section with a ‘tutorial’ exercise in the use of the logic; we consider

the program set out in Fig. 3, for which we calculate the least possible probability
that the variable b is set to true after a single execution. From DeGnition 2.2 that is
given by wp:Chooser:{b = true}, where {e= v} denotes the predicate (i.e. character-
istic expectation) ‘e is equal to v’. From Fig. 2 we see that in order to evaluate the

198 A.K. McIver / Theoretical Computer Science 282 (2002) 191–219

Chooser := (b := true) if {b = true} else (b := true)[](b := true 1=2 ⊕ b := false)

If b is false initially then it can be either set to true unconditionally, or only with probability 1=2: the choice
between those two options is resolved nondeterministically.

Fig. 3. Randomised Chooser with a Boolean-valued variable b.

conditional choice in Chooser, we need to consider each of the options separately—
i.e. the case that the program starts with b set to false, and the case that it does
not.
We calculate the ‘b= false’ case Grst. In this straightforward example, it is easy to

see that a strategy that opts for the left branch of the nondeterministic choice results
in b being set to true with probability 1, whereas the strategy that opts for the right
branch sets it to true with probability only 1=2, thus the minimum probability (over all
such strategies) must be at least greater than the minimum of these two extremes and
so is also 1=2. The calculation below represents the formal veriGcation of that fact.

wp:((b := true)[](b := true 1=2⊕ b := false)):{b= true}
nondeterministic choice

≡ wp:(b := true):{b= true}�wp:(b := true 1=2⊕ b := false):{b= true}
assignment

≡ {true= true}�wp:(b := true 1=2⊕ b := false):{b= true}
see below

≡ 1� (wp:(b := true 1=2⊕ b := false):{b= true})
probabilistic choice

≡ 1� (1=2(wp:(b := true):{b= true}) + 1=2(wp:(b := false):{b= true}))
assignment

≡ 1� ({true= true}=2 + { false= true}=2)
see below

≡ 1� (1=2× 1 + 1=2× 0)

≡ 1=2: arithmetic

For the deferred justiGcations, we use the equivalences {true= true}≡ 1 and { false=
true}≡ 0.
A similar (though easier) calculation follows for the ‘b= true’ case, resulting in

wp:(b := true):{b= true}≡ 1. Putting the two together with the rule for conditional
choice we Gnd

wp:Chooser:{b = true} ≡ {b = true}+ {b = false}=2 (4)

implying that there is a probability of at least 1=2 of achieving {b= true} if execution
of Chooser begins at {b= false} and of (at least) 1 if execution begins at {b= true}.

A.K. McIver / Theoretical Computer Science 282 (2002) 191–219 199

In contrast, we can calculate the greatest possible probability of reaching {b= false}
using DeGnition 2.3:

w̃p:Chooser:{b = false}
≡ 1− wp:Chooser:(1− {b = false}) (3)

≡ 1− wp:Chooser:{b = true} b is Boolean-valued

≡ 1− ({b = true}+ {b = false}=2) (4)

≡ {b = false}=2;

(5)

yielding a probability of at most 1=2 if execution begins at {b= false} and 0 if it begins
at {b= true}—there is no execution from (initially) {b= true} to (Gnally) {b= false}.

To sum up, we have considered minimum and maximum probabilities using wp
and w̃p for a single execution of a program, demonstrating the two extreme strategies
(demonic and angelic) for resolving nondeterministic choice. In the next section we
extend this logical viewpoint to temporal-style semantics.

3. Computation trees and �xed points

In this section we consider arbitrarily many executions of a Gxed program denoted
©, for that is how many distributed algorithms may be modelled. Later we shall inter-
pret © (or ©̃) as a speciGc wp:prog (or w̃p:prog) for some program prog, but for the
moment we adopt an abstract view. Ordinary program semantics of such systems are
computation trees [1], with each arc of the tree representing a transition determined
by ©. A path in the tree represents the eJect of some number of executions of ©,
and is deGned by a sequence whose entries are (labelled by) the states connecting
contiguous arcs. When (the interpretation of) © contains both probabilistic and non-
deterministic choices, a set of distributions over computation paths may be generated
in the following way. To generate a single such distribution Grst the nondeterminis-
tic choices are resolved according to some strategy, and then the state is updated to
be consistent with the remaining probabilistic transitions. This procedure is iterated,
possibly by employing diJerent strategies for resolving the nondeterminism on each
separate iteration. Clearly, with the nondeterminism removed and replaced by explicit
strategies, the probabilities over the Gnite paths may be calculated directly, and they
determine a well-deGned probability distribution over all paths. (It is usually called the
Borel measure over cones [8], and the essentials of this construction appear in other
works [17, 3].) The set of distributions that can be generated from a particular inter-
pretation of © can be found by varying the possible ways to choose the strategies.
We call the set of distributions so-generated a probabilistic tree (generated by a given
interpretation of ©).
Our aim for this section is, as for the state-to-state transition model, to extract prob-

abilistic information about the path-distributions in probabilistic trees by interpreting
‘path formulae’ (deGned with expectation transformers) over the computation trees.

200 A.K. McIver / Theoretical Computer Science 282 (2002) 191–219

least possible eventually ✸A := (�X · A�©X)
greatest possible eventually ✸̃ A := (�X · A�©̃X)

least possible always ✷A := (�X · A�©X)
greatest possible always ✷̃ A := (�X · A�©̃X)

least possible time to B UB := (�X · 0 if B else (1 +©X))
greatest possible time to B �̃B := (�X · 0 if B else (1 + ©̃X))

B is {0; 1}-valued and A is nonnegative-valued.

Fig. 4. Expectation operators with respect to a distribution over the computation tree generated by ©.

The result of the interpretation however should correspond with the following intu-
ition. Consider a �-calculus formula � which describes some temporal property say.
Another way to think of � is as a function f� from computation paths to {0; 1}, map-
ping a path pt to 1 if the path satisGes � and zero otherwise. We call such a function
a ‘path function’. (For example [23].) Similarly, though more generally, other kinds of
formulae may be associated with real-valued path-functions; for example the deGnition
in Fig. 4 gives a �-calculus-style formula which has such an interpretation that maps
paths to the ‘distance’ until the Grst time that some predicate (A) is satisGed along the
path. (We give some details of this below.) Having introduced the idea of formulae as
path-functions it is now easy to give an intuition over probabilistic trees.
The idea is that given a formula � we can construct a function Pf� from path-

distributions to the reals given by

f�:t :=
∫
t
f�;

where t is a path-distribution. This gives the expected value of the function f� with
respect to t. When � corresponds to a temporal property Pf�:t calculates the proportion
of paths (with respect to t) that satisfy the property; when � corresponds to the formula
in Fig. 4 then it calculates the expected path-length until A is reached. Finally, we take
the minimum value Pf�:t over all distributions in the computation tree to obtain a ‘least
expected value’. This, then is our intended interpretation of � over a probabilistic tree.
It turns out that we can approach that interpretation more directly using the quanti-

tative logic. All we need is to interpret © as wp:prog (corresponding to the program
prog that generates the probabilistic tree), and to Gnd the Gxed points with respect
to V, in appropriate subsets of ES. We use � or � to denote, respectively, least or
greatest Gxed points; their existence is assured in complete spaces that have least and
greatest elements. In particular in the nonnegative reals the least element is 0, whilst
for the greatest element we add ‘inGnity’ as a special value. That leads to promoted
least and greatest elements in E¿S (the nonnegative-valued expectations) as 0 and the

A.K. McIver / Theoretical Computer Science 282 (2002) 191–219 201

constant ‘everywhere inGnite’ function. The partially ordered space (ES; V) is also
complete (when restricted to expectations with a Gxed bound).
The details that this ‘logical interpretation’ corresponds to the minimum expected

value described above is set out elsewhere [14, 15].
Our Grst example of Gxed point deGnitions occur in our generalisation of the familiar

temporal properties ‘eventually’ and ‘always’; it turns out that the standard formulations
[15] of both properties have straightforward extensions in the quantitative logic by
replacing ∨ and ∧ in the ordinary �-calculus expressions by � and � , respectively,
and interpreting © as an expectation transformer. The resulting operators, ✸ and ✷

(set out in Fig. 4), when applied to a characteristic expectation A return the (least
possible) probability (rather than the certainty) that eventually or always A holds of
the paths in the computation tree. These will be invaluable later for encoding invariant
properties of the system.
Next, we introduce our basic time-bound operator, denoted by , which like the

other temporal operators, also has a concise Gxed point formulation (Fig. 4). 5 If A is
characteristic then UA returns the expected length of the paths in the computation tree
until a state is reached that satisGes the predicate represented by A. In the context of
probabilistic programs it corresponds to the expected number of (repeated) executions
of © required until A holds. To make the link between the Gxed-point expression 6 for
UA in Fig. 4 and the expected length of the computation path to reach A we unfold
the Gxed point once: if A holds it returns 0—no more steps are required to achieve
A along the path; otherwise we obtain a ‘1+’—at least one more step is required to
reach A.
We use this to deGne a function F from paths to reals in the following way. Let pt

be a path and ‘s∈¬A’ return 1 if s satisGes ¬A and 0 otherwise. Let head and tail be
the path operators that take the head and tail of a path. F can now be deGned as the
limit

F:pt :=

�{n¿ 1 · (head:pt ∈ ¬A)× (1+

(head tail:pt ∈ ¬A)× (1 + : : : ((head tailn:pt ∈ ¬A)}
which can be seen to correspond to an unfolding of the function UA with © interpreted
at moving one place along the path. It is clear that F does indeed calculate the minimum
distance from the head of pt until A is satisGed.
Finally when interpreted in the quantitative logic, with © interpreted as wp:prog and

the least Gxed point with respect to V then the eJect is to calculate the least expected
path-length (that is the least expected value

∫
t F over all path-distributions t in the

probabilistic tree generated by prog). A formal justiGcation is given elsewhere [14].

5 Its formulation, and the notation, were suggested by Carroll Morgan.
6 This has equivalent formulation

UB ≡ (�X · ¬B× (1 +©X)).

202 A.K. McIver / Theoretical Computer Science 282 (2002) 191–219

feasibility ✸̃ AV 1

duality If AV 1 then ✸̃ A≡ 1− ✷(1− A)

invariants If I V©I and I V A then I V ✷A

A; A′ and I are nonnegative-valued expectations in E¿S.

Fig. 5. Some properties of the path operators.

In general, the �-calculus expressions correspond to the ‘for all’ or ‘exists’ fragments
of temporal logic [1] according to whether they are deGned with © or ©̃. For example
✸̃A deGned with ©̃ returns the maximum possible probability that a path satisGes
eventually A. Also �̃A gives an upper bound on the number of steps required to
reach A.
All the properties of Fig. 5 follow from the deGnitions under the assumption that ©

is sublinear.
The invariant law deserves special mention, since it extends the notion of ordinary

program invariants to the probabilistic context: just as in ordinary program logic, in-
variants capture a static predicate about the transition system, so probabilistic invariants
capture static probabilistic properties about the probabilistic transition system.

De�nition 3.1. An expectation I in E¿S is said to be an invariant of © provided that

©I W I:

When I takes arbitrary values, the invariant law says that the probability that A
always holds along the paths with initial state s is at least I:s. This property is fun-
damental to our treatment of ‘rounds’ in the next section, where we also present a
lengthier account of invariants.
We end this section with another tutorial-style example of a calculation involving �̃.

Again we use the program Chooser set out in Fig. 3 above, (hence ©̃ is interpreted as
w̃p:Chooser), and we wish to calculate �̃{b= true} an upper bound on the expected
number of times Chooser must be executed until b is set to true. In a simple case where
there is a probability of success on each execution (speciGcally here if Chooser sets b
to true) elementary probability theory implies that the expected time to success is the
result of summing over a geometric distribution; in contrast the calculation below shows
how to Gnd that time using our program logic, in which strategies are automatically
resolved appropriately. We note Grst that �̃{b= true} evaluated at ‘b= true’ is 0 (for
b is already set to true). Thus we know that �̃{b= true}≡ q{b= false}, for some
nonnegative real q which we must determine (where recall that we use qA to mean ‘A

A.K. McIver / Theoretical Computer Science 282 (2002) 191–219 203

scaled by q’). With that in mind, we reason

�̃{b= true}
deGnition �̃; Fig. 4

≡ ¬{b= true}× (1 + w̃p:Chooser:(�̃{b= true}))�̃{b= true}≡ q{b= false}

≡ {b= false}× (1 + w̃p:Chooser:(q{b= false}))
see below

≡ {b= false}× (1 + q(w̃p:Chooser:{b= false}))
from (5)

≡ {b= false}× (1 + q{b= false}=2) :
For the deferred justiGcation we are using the scaling property (Fig. 1) which also
holds for w̃p: Chooser and which allows us to distribute the scalar q.
Now evaluating at ‘b= false’ we deduce from the above equality that

q = 1 + q=2;

giving q=2, and (unsurprisingly) an upper bound of 2 on the number of executions
of Chooser required to achieve success.
Note that the application of w̃p: Chooser automatically resolves the nondeterminism

to optimise the goal of calculating the maximum time to reach {b= true}; operationally
the eJect of that resolution strategy is to select the probabilistic branch rather than the
alternative in which b is immediately set to true. The calculation above yields the
bound that dominates all strategies.
So far we have deGned the expected time bound for a tree built from an atomic

step ©, interpreted as a single program. (In the example it is Chooser.) A seem-
ingly diJerent setting is provided by distributed systems, the subject of this paper.
Distributed systems are constructed from a number of individual processors, each in-
dependently executing their local programs, albeit as part of some overall collaborative
eJort. Analysing the system boils down to making sense of the composite behaviour,
which is some interleaving of the processors’ individual execution steps made in the
local programs. The details of the interleaving are managed by the particular schedul-
ing policy chosen as part of the implementation of the system, and it is here that the
underlying concurrency in the system reveals nondeterminism.
The Grst step in the analysis of an algorithm is to abstract from as many of those

details as possible whilst maintaining all the schedule-speciGc restrictions required to
preserve correctness. In this paper we impose weak fairness on the scheduler which
means that eventually each process is scheduled and is allowed to execute its local
program. 7 (This reduces to the usual deGnition if we assume that all processes are
continuously enabled [2].) It is this condition that prevents us using too weak an

7 Sometimes this is called “fairmerge”.

204 A.K. McIver / Theoretical Computer Science 282 (2002) 191–219

interpretation for ©. For example were we to model every step of the system’s com-
putation sequence as a nondeterministic choice over the processors’ programs (even
though examination of an arbitrary Gnite fragment of the execution sequence might
suggest that behaviour) we would be unable to prove that the dining philosophers’
protocol terminated and our estimate of its performance would only be a useless inG-
nite upper bound. We must use a stronger interpretation for ©.
As others do [17], we deGne a ‘round’ to be an interval of the system’s execution

sequence in which each local algorithm has been scheduled at least once, and we count
those by associating a round’s behaviour with ©̃ in the expression for ̃.
This interpretation of a round is equivalent to the assumption of (weak) fairness (at

the end of a round each process has been scheduled at least once, conversely in a fair
system rounds always exist), so by carefully inferring properties of a round only from
its abstract formalisation (given below), we shall be able to bound the expected time
to eating of the dining philosophers under every implementation of a fair scheduling
policy. That is the subject of the next section.

4. Fair adversary schedulers and probabilistic invariants

We consider a distributed system composed of N processors, each one with the
ability to execute independently programs P1; : : : ; PN respectively, and indeed the system
as a whole evolves by independent execution of (an atomic step) of one of the Pi. It
is the job of the scheduler to choose the order in which the (atomic steps of the) Pi’s
are scheduled. An unconstrained scheduler may choose any order at all, whilst one
constrained by a notion of fairness has less freedom. In an unconstrained system we
allow any Pi to be selected at every step; that is equivalent to modelling an execution
step of the system as []16i6NPi. (Here we see where [] abstracts from the scheduler’s
choice.) As we have explained, that is too weak for the dining philosophers, because
repeated executions of []16i6NPi will produce all possible sequences, the fair as well
as the unfair. The next stage is to reduce the scheduler’s choice in such a way that
only fair sequences are generated. Another way of saying that is to deGne a program
Round such that
(a) if Round terminates then the observed eJect on the state is the same as if each

Pi has executed at least once, and
(b) Round must terminate.
Any program (Round) satisfying both (a) and (b) represents the minimum require-
ments on a fair scheduler. Thus if we interpret © as wp.Round in our operators then
the correct time bounds will be calculated, because we will be calculating (correctly)
executions of Round rather than of []16i6NPi.

There are a number of ways to specify Round (speciGcally wp:Round satisfying
(a) and (b). One possibility is to specify exactly the fair execution sequences of the
Pi contained in Round; another is to characterise (a) and (b), declare that Round
must satisfy them and analyse their consequences. For weak fairness, the latter is the

A.K. McIver / Theoretical Computer Science 282 (2002) 191–219 205

easiest approach, for as we shall see, it allows us to restrict our analysis to checking
invariants.
Other notions of fairness satisfy more complicated invariant properties [20], and

probabilistic fairness [5] would need both a probabilistic choice between the programs
Pi and a speciGcation of Round, thus would not simplify the analysis in this context.
We impose the two conditions (a) and (b) above separately. Considering (b) Grst,

we deGne the action of an unconstrained scheduler, which we denote by the program
P∗, only conGning its activity to terminating sequences. It turns out that it is easy to
describe P∗ exactly: it is the greatest Gxed point of the function(

'X · skip[]
(

[]
16i6N

Pi

)
;X
)
;

since P∗ is not disturbed by preGxing with skip[]([]16i6NPi) and [] allows the scheduler
free choice amongst the Pi at each step. Since it does allow the scheduler free choice
P∗, another way to think of it is as the weakest program (with respect to �) that
terminates after some arbitrary iterations of the Pi. The next deGnition formalises this
as a transformer and the operational justiGcation is set out elsewhere [15].

De�nition 4.1. The weakest program that terminates after some number of executions
of P1; : : : ; Pn is deGned by

wp:P∗:A := (�X · A � wp:([]16i6N)Pi:X);

for any A in ES.

Next, we turn to condition (a) above, and constrain P∗, by selecting those com-
putations that contain at least one execution of each Pi—it is easy to see that (for
each i) those sequences have (at least) the same eJect as the program P∗;Pi;P∗; put
another way, we must have that Round is a reGnement of P∗;Pi;P∗. This then deGnes
a Round.

De�nition 4.2. Let Round be some program implementing a scheduling policy of a
distributed system deGned by the programs P1; : : : ; PN . We say that Round satisGes the
weak fairness condition provided that

P∗;Pi;P∗ � Round

for all 16i6N .

DeGnition 4.2 says, above all else, that the observed eJect on the state after execution
of any program Round can be explained by arguing that each Pi must have been
executed at least once—before or after those executions nothing is known beyond
that the state may be changed only by execution of the Pi, hence the sandwiching
with P∗. Having settled weak fairness we turn to proofs; our main technique will be
‘probabilistic invariants’.

206 A.K. McIver / Theoretical Computer Science 282 (2002) 191–219

Recall DeGnition 3.1 that probabilistic invariants supersede the notion of ordinary
program invariants in that we have replaced ordinary implication by probabilistic impli-
cation. Indeed when I is characteristic, it being a probabilistic invariant means much the
same as before: execution of prog from a state satisfying I results in a Gnal state also
satisfying I . More interesting are probabilistic invariant properties which often cannot
be encoded by characteristic invariants; however since we allow real-valued functions
in our expressions those that are characteristic often have simple formulations. An
example of the latter kind is the invariance of the function 8

1=26 wp:Chooser:{b = true}; (6)

with respect to Chooser. This says that from every state there is at least 1=2 chance
of setting b to true. (In fact (6) is equivalent to true anyway, and thus is trivially
invariant—but the point is how easily the ‘there is always a probability 1=2’ can
be expressed.) In the next sections we shall see examples of invariants that do not
correspond to characteristic expectations, and typically they express properties such
as ‘there is always a probability of at least 1=2 of maintaining predicate Q’. Such
invariants, though noncharacteristic themselves, satisfy the inequality IVQ.
Returning now to P∗, we see that if I represents an invariant set of states with

respect to []16i6NPi, then

I V wp:P∗: I; (7)

since I cannot be falsiGed by execution of []16i6NPi. In fact (7) holds even when I
is a probabilistic invariant. With that observation we can prove the main result of this
section: how to deduce properties of Round using invariants.

Lemma 4.3. If I; I ′ are probabilistic invariants with respect to []16i6NPi; and such
that there is some 16i6N such that wp:Pi: IW I ′; then wp:Round:IW I ′.

Proof. We reason as follows

wp:Round: I

W wp:(P∗;Pi;P∗): I DeGnitions 4:2; 2:1; (2)

≡ wp:P∗:wp:Pi:wp:P∗: I sequential composition; Fig: 2

W wp:P∗:(wp:Pi: I) (7)

W wp:P∗: I ′ assumption; monotonicity

W I ′ (7):

8 Here we lift 6, deGned on the reals, (as distinct from V) to a function on expectations: (a6b): s=1
if a: s is no greater than b: s; otherwise (a6b): s=0.

A.K. McIver / Theoretical Computer Science 282 (2002) 191–219 207

least possible visits to A #A := (�X · (©X) if ¬A else A +©X)

greatest possible visits to A #̃A := (�X · (©̃X) if ¬A else A + ©̃X)

A is {0; 1}-valued.

Fig. 6. The expected number of visits.

Lemma 4.3 embodies the progress property inferred by fairness. If an invariant I ′

holds initially, and if from within that invariant some (helpful) Pi establishes a second
invariant I , then I must hold at the end of the round. Fairness guarantees that Pi
executes at some stage in the round, and no matter how the round begins if I ′ holds
initially, invariance ensures that it holds at that stage, after which the now established
invariant I continues to hold, no matter how the round is completed. A special case of
this is that local invariants are also Round invariants; to see it we take I ′ to be equal
to I in Lemma 4.3.

5. Counting rounds

The signiGcance of Lemma 4.3 is that it provides our only tool for dealing with
fairness. With it we can estimate upper bounds on w̃p:Round:A by Gnding an invariant
I such that 1−IVA and then converting it to an upper bound on w̃p:Round using (3):

w̃p:Round:A

V w̃p:Round:(1− I) monotonicity

≡ 1− wp:Round: I (3)

V 1− I: I Invariant; Lemma 4:3:

For our application to performance that is still not enough because it is not the case
that ŨA can be formulated as such a simple function of an invariant; in this section
we consider the consequences of using an alternative performance measure that can be.
We introduce a second measure (#̃) set out in Fig. 6 which counts steps in a diJerent

way. As we shall see, it provides the required access to Lemma 4.3 as well as naturally
encouraging the prover to divide up the state space into manageable chunks via its
suplinearity property.
Informally, #̃A counts the (maximum) expected number of times that A ever holds

along paths in the computation tree. As from UA, we can understand #̃A by unfolding:
if A holds in the current state on a path, it is deemed to be one more visit to A; similarly
unfolding the Gxed point once reveals a corresponding ‘1+’ in that case. (This operator

208 A.K. McIver / Theoretical Computer Science 282 (2002) 191–219

suplinearity #̃(A + B)V #̃A + #̃B

visit-reach �̃¬AV #̃A
with equality if ¬AV©¬A

visit-eventually #̃AV ✸̃ A=(1− p);
where p := (� s:A · ©̃(✸̃ A):s).

A is {0; 1}-valued. In the visit-eventually rule, p is the greatest possible probability that A is ever revisited;
if p=1 that upper bound is formally inGnite.

Fig. 7. Some properties of expected visits.

is well known from standard probability theory and #̃ is the generalisation to include
nondeterminism.) The new performance operator is related to Ũ¬A by observing that
for characteristic A the number of times A holds on the path is at least as great as the
length of the path until ¬A holds. Other properties of #̃ are set out in Fig. 7. (Note
that with this notation we have returned brieOy to the abstract notions of Section 3.)
The promised link between performance and local invariants is found in the visit-

eventually rule. It generalises a result from Markov processes [8] which says that
the expected number of visits to A is the probability that A is ever reached (�̃A)
conditioned on the event that it is never revisited (probability 1−p). The importance
of the visit-eventually rule in the context of distributed algorithms is that an upper
bound on �̃A=(1−p) may be calculated from upper bounds on both �̃A and ©̃�̃A,
both of which are implied by lower bounds on invariants, since from Fig. 5 we have
©̃A ≡ 1− (1− A), and that (1− A) is an invariant.
To see this in action, we consider again Chooser of Fig. 3, and repeat the calculation

of #̃{b= true}, but this time taking the indirect route of the visit-eventually rule and
interpreting all occurrences of ©̃ as w̃p:Chooser. First the visit-reach rule tells us that
 ̃{b= true} ≡ #̃{b= false}, since {b= true} is invariant with respect to Chooser. Next,
we use the visit-eventually rule and discover that we need to calculate �̃{b= false}
and w̃p:Chooser:�̃{b= false}. Since {b= true} is an invariant, we deduce immediately
that �̃{b= false} ≡ {b= false}, from which we can read oJ w̃p:Chooser:�̃{b= false}
as {b= false}=2. That gives p=1=2 and an overall upper bound of 2{b= false}, con-
sistent with the exact calculation in Section 3.
Finally, we draw together the notions of rounds, performance and invariants, and

we prove a theorem speciGc to the distributed context; it forms the main result of this
section.

Theorem 5.1. Consider a distributed system de9ned by processes P1; : : : ; PN arbitrated
by a fair scheduler. Given an expectation A and local invariants I; I ′ such that AV 1−
I and wp:Round:IW I ′; the maximal possible number of times that A holds (after

A.K. McIver / Theoretical Computer Science 282 (2002) 191–219 209

execution of Round) #̃A is given by

#̃AV 1=(1− q);

where q := 1− (�s : A · I ′: s) and ©̃ is de9ned to be w̃p:Round in the de9nition of #̃.

Proof. Using the notation of the visit-eventually property of Fig. 7 we see that an
upper bound on #̃A is given by upper bounds on both �̃A and p. By appealing to
feasibility (Fig. 5) and arithmetic we deduce immediately that #̃AV 1=(1− q) for any
q¿p. All that remains is to calculate the condition on q. We begin by estimating an
upper bound for w̃p:Round:(�̃A).

wp:Round:(�̃A) Fig: 7

V w̃p:Round:(�̃(1− I)) monotonicity; Fig: 5;AV 1− I

≡ w̃p:Round:(1− (1− (1− I))) duality; Fig: 5

≡ w̃p:Round:(1− I) arithmetic

V w̃p:Round:(1− I) I V I ; invariants; Fig: 5

≡ 1− wp:Round: I DeGnition 2:3

V 1− I ′ assumption

(8)

Next we bound q:

q¿ p

if q¿ (�s : A · w̃p:Round(�̃A): s) deGnition p; Fig: 7

if q¿ (�s : A · (1− I ′): s) (8)

if q¿ 1− (�s : A · I ′: s); arithmetic

as required.

To show that I ′ is established after execution of Round, we just need it to be
established by one of the Pi.

Corollary 5.2. Let P1; : : : ; PN be a distributed system as in Theorem 5:1; and let I; I ′

be local invariants and A an expectation such that AV 1 − I and I ′Vwp:Pi: I for
some i. In that case

#̃AV 1=(1− q);

where q is as in Theorem 5:1.

Proof. From Lemma 4.3 and the assumptions, we deduce that wp:Round:IW I ′. The
result then follows directly from Theorem 5.1.

210 A.K. McIver / Theoretical Computer Science 282 (2002) 191–219

In this section we have investigated how to estimate performance of distributed
algorithms is terms of counting ‘rounds’. The result is the following tractable method:
to Gnd the expected time until some predicate A holds, consider instead the expected
number of total visits to its complement ¬A, which should satisfy some invariant
property allowing application of Theorem 5.1. If necessary, to make the task of Gnding
invariants easier, ¬A can be further decomposed using the suplinearity rule. Note that
the upper bound on ŨA achieved with this method will be reasonably good if A is an
invariant of ©.
The choice of decomposition (the only creative part of the exercise) of course de-

pends on the details of the particular algorithm; and the only advantage of using the
method and techniques suggested here is that the formal proof obligations are straight-
forward to verify.

6. Performance of the dining philosophers

In this section we illustrate our operators above by considering Rabin and Lehmann’s
randomised solution [13] to the well-known problem of the dining philosophers. The
problem is usually presented as a number of philosophers P1; : : : ; PN seated around a
table, who variously think (T) or eat (E). In order to eat they must pick up two forks,
each shared between neighbouring philosophers, where the ith philosopher has left,
right neighbours, respectively, Pi−1 and Pi+1 (with subscripts numbered modulo N).
A solution to the problem is a distributed protocol guaranteeing that some philoso-
pher will eventually eat (in the case that some philosopher is continuously hungry).
Randomisation is used here to obtain symmetry in the sense that philosophers exe-
cute identical code—any non-random solution cannot both guarantee eating and be
symmetrical [13].
The aim for this section is to calculate upper bounds on the expected time until

some philosopher eats, and since we are only interested in the time to eat we have
excluded the details following that event. The algorithm set out in Fig. 8 represents the
behaviour of the ith philosopher, where each atomic step is numbered. A philosopher
is only able to execute a step provided he is scheduled and when he is, he executes
exactly one of the steps, without interference from the other philosophers. Fig. 8 then
describes a philosopher as follows: initially, he decides randomly which fork to pick up
Grst; next he persists with his decision until he Gnally picks it up, only putting it down
later if he Gnds that his other fork is already taken by his neighbour. We have omitted
the details relating to the shared fork variables, and for ease of presentation we use
labels T; E; l; r, etc., to denote a philospher’s state, rather than the explicit variables’
values they imply. Thus, for example, if Pi is in state Li or Pi−1 is in state Ri−1, it
means the variable representing the shared fork (between Pi and Pi−1) has been set
to a value that corresponds to ‘taken’. The distributed system can now be deGned as
repeated executions of the program []16i6NPi, together with the weak fairness condition,
DeGntion 4.2.

A.K. McIver / Theoretical Computer Science 282 (2002) 191–219 211

1: if Ti → li 1=2 ⊕ ri
2: [] (li ∨ ri) → if (li ∧ ¬Ri−1) → Li

[] (li ∧ Ri−1) → li
[] (ri ∧ ¬Li+1) → Ri
[] (ri ∧ Li+1) → ri
�

3: [] (Li ∨ Ri) → if (Li ∧ ¬Li+1) → Ei
[] (Li ∧ Li+1) → Li
[] (Ri ∧ ¬Ri−1) → Ei
[] (Ri ∧ Ri−1) → Ri
�

4: [] (Li ∨ Ri) → Ti
�

The state Ti represents thinking, li(ri) that a philosopher will attempt to pick up the left (right) fork next
time he is scheduled, Li(Ri) that he is holding only the left (right) fork, Li(Ri) that he will put down the
left (right) fork next time he is scheduled and Ei that he eats. The use of state as a Boolean means ‘is in
that state’; as a statement it means ‘is set to that state’.

Fig. 8. The ith philosopher’s algorithm [13].

Let Eat be the predicate where some philosopher is eating,

Eat := (∃i · Ei):

The performance of the Dining Philosophers is now given by �̃Eat, the expected
number of rounds that the algorithm must execute before some philospher eats. And
since we are only interested in rounds we interpret ©̃ as w̃p:Round.
Our principal tools for calculating �̃Eat will be the visit-reach rule, Theorem 5.1

and suplinearity of #̃; we shall use the latter property to decompose the state space
into chunks for which guessing invariants to use in Theorem 5.1 (or Corollary 5.2) is
easy.
We can identify a number of landmark invariant philosopher conGgurations which

represent signiGcant progress on the way to Eat. In this section we examine only one
however, denoted by Block and deGned below. In the appendix we give a table of
invariants which can be used to construct a full formal proof of the upper bound of
performance. All that remains is a veriGcation of the conditions of Theorem 5.1, and
those techniques are well illustrated by the calculation of #̃(¬Block) in Lemma 6.1
below.
Turning now to some details, the invariant Block represents the conGguration in

which two ‘almost adjacent’ philosophers are either trying for or have already picked
up ‘opposite Grst forks’. ‘Almost adjacent’ means that the two philosophers (Pi and Pj)
are separated by thinkers (Tk holds whenever k lies ‘clockwise’ between i and j), and
‘opposite Grst forks’ means that philosopher i is attempting to pick up, or already has
picked up his left fork (li ∨Li) whilst philosopher j is in the same situation except in

212 A.K. McIver / Theoretical Computer Science 282 (2002) 191–219

respect of his right fork (lj ∨Lj).

Block := (∃i; j · (li ∨ Li) ∧ (rj ∨ Rj) ∧ (∀k | between(i; k; j) · Tk)) ∨ (∃i · Ei);
where

between(i; k; j) = (∃n; n′ | n+ n′ ¡ N · (i + n = k)modN ∧ (k + n′ = j)modN);

identiGes the philosophers lying ‘clockwise’ between i and j.
To see that Block is invariant, we write it as the union of a set of functions Bij

given by

Bij := (li ∨ Li) ∧ (rj ∨ Rj) ∧ (∀k | between(i; k; j) · Tk);
which together are ‘almost permuted’ by execution by the Pk . Execution either leaves
Bij alone, establishes Eat or establishes one of Bik or Bkj. Thus their union (which is
equal to Block) is left invariant overall.
Notice that the length of a Block can be deGned as the shortest distance between

almost adjacent philosophers with opposite forks, and the special case that the distance
is zero corresponds to the predicate Eat. The dining philosophers algorithm can thus
be seen as implementing a procedure that (eventually) reduces that distance once it is
established.
In terms of overall performance, we apply suplinearity to divide the problem into

two smaller ones.

�̃Eat
≡ #̃¬Eat Fig. 7
≡ #̃(¬Eat� (Block � ¬Block))
≡ #̃(¬Eat�Block + ¬Block) disjoint predicates
V #̃(¬Eat�Block) + #̃(¬Block): suplinearity; Fig. 7

The result tells us that it is suNcient to estimate upper bounds on the number of
returns to ¬Block, (equivalently, since Block is invariant, the time to establish Block)
and similarly the time to establish Eat given that Block holds. In the latter case we
have indeed reduced the problem since we can consider a smaller set of states (those
that satisfy Block). In the remainder of this section we calculate #̃(¬Block).

Lemma 6.1. #̃(¬Block)V 22.

Proof. Again we decompose the problem. The terms Bi below are deGned in Fig. 9:

#̃¬Block
≡ #̃(�

06i66
Bi) Fig. 9

≡ #̃(
∑

06i66
Bi) Bi are pairwise disjoint

V
∑

06i66
#̃Bi: suplinearity, Fig. 7

A.K. McIver / Theoretical Computer Science 282 (2002) 191–219 213

B0 := (∀i · Ti)
B1 := (∃i · (li ∨ Li ∧ Ti+1) ∨ (ri ∨ Ri ∧ Ti−1))
B2 := (∃i · (li ∨ Li ∧ Ri+1) ∨ (ri ∨ Ri ∧ Li−1)) ∧ ¬B1
B3 := (∃i · Ti) ∧ B
B4 := (∃i · Ri ∨ Li) ∧ ¬B3 ∧ B
B5 := (∃i · Li ∨ Ri) ∧ ¬(B3 ∨ B4) ∧ B
B6 := (∀i · li) ∨ (∀i · ri);

where
B := ((∀i · li ∨ Li ∨ Li ∨ Ti)∨

(∀i · ri ∨ Ri ∨ Ri ∨ Ti)) ∧ ¬B0:

¬Block can be decomposed into seven (pairwise) disjoint satisGable predicates B0; B1; : : : ; B6.

Fig. 9. The decomposition of ¬Block.

Next, we calculate #̃(Bi) for the various predicates Bi. From Theorem 5.1, for each
Bi, we need to Gnd invariants Ii; I ′i satisfying the conditions

Bi V 1− Ii (9)

I ′i V wp:Round:Ii: (10)

The invariants we use are set out in Fig. 10; we verify the conditions only for B1;
the other cases are similar.
For B1 we take I1 to be Block and I ′1 to be Block � B1=2.
Since we already know that Block is an invariant, we concentrate on Block � B1=2,

showing that it is both invariant and that it satisGes (10).
A typical instance of a conGguration that implies Block � B1=2 is given by

I ′(i;l) := Block � ((li ∨ Li) ∧ Ti+1)=2

and indeed, as we shall see, such conGgurations account for all of Block � B1=2. The
point of identifying I ′(i; l) is that it is very easy to verify our desired properties for it.
SpeciGcally, we show that I ′(i; l) is invariant and that (10) holds in the form

I ′(i;l) V wp:Round:Block: (11)

For example to prove (11), we reason

I ′(i; l)
≡ Block � ((li ∨ Li) ∧ Ti+1)=2 deGnition
≡ Block � wp:Pi+1:((li ∨ Li) ∧ ri+1) see below
V Block � wp:Pi+1:Block deGnition of Block; monotonicity
≡ wp:Pi+1:Block: invariance of Block

For the deferred justiGcation, we use the easy equivalence

wp:Pi+1:((li ∨ Li) ∧ ri+1) ≡ ((li ∨ Li) ∧ Ti+1)=2:

214 A.K. McIver / Theoretical Computer Science 282 (2002) 191–219

A I I ′ p 1=(1− p)
B0 Block �B1=2 I �B0=2 1=2 2

B1 Block Block �B1=2 1=2 2

B2 Block �
(B0 �B1)=2 I �B2=2 1=2 2

B3 Block �
(B1 �B2 �B0)=2 I �B3=4 3=4 4

B4 Block �
(B1 �B2 �B0)=2�

B3=4 I �B4=4 3=4 4

B5 Block �
(B1 �B2 �B0)=2�

(B3 �B4)=4 I �B5=4 3=4 4

B6 Block �
(B1 �B2 �B0)=2�
(B3 �B4 �B5)=4 I �B6=4 3=4 4

Expectations in columns labelled A; I; I ′ satisfy the relationships A V 1 − I , I V wp:Round:I and
I ′Vwp:Round:I .

Fig. 10. Invariants for Lemma 6.1.

A similar calculation shows that I(i; l) is invariant with respect to []16i6NPi, hence
we can appeal to Lemma 4.3, using the above instance of Pi+1 in establishing Block
to deduce (11).
Similar reasoning veriGes that indeed Round establishes Block from within the dual

set of invariants I(i; r).
But now (10) and invariance must also hold for Block � B1=2, since we have the

equivalence

Block � B1=2 ≡
(⊔

(06i6N)
I ′(i;l)

)
�
(⊔

(06i6N)
I ′(i;r)

)
;

and since we have shown that those properties belong to the component conGgurations
I(i; l) and I(i; r). Monotonicity of wp:Round implies the claim.
Finally, we can at last appeal to Theorem 5.1 to obtain a value of 1=2 for q and

therefore an upper bound of 2 for #̃B1.
The invariants for the other Bi can be treated similarly, and are set out in Fig. 10.

The last column in that Ggure gives the expected visit to each subset, giving the overall
upper bound of 22.

A.K. McIver / Theoretical Computer Science 282 (2002) 191–219 215

7. Conclusion

In this paper we have shown how ordinary correctness techniques of distributed
algorithms can be applied to probabilistic programs by using quantitative program logic,
and that the methods apply even in the evaluation of performance.
This treatment diJers from other approaches to performance analysis of probabilistic

algorithms [17, 3, 9, 21] in that we do not refer explicitly to the distribution over com-
putation paths; neither do we factor out either the nondeterminism or the probability
as a Grst step; nor even do we analyse the behaviour of the composed system. Instead
we use a goal-directed approach, focussing on the property under consideration; the
expectation transformer approach automatically resolves the nondeterminism optimally
to suit the problem.
Earlier approaches to probabilistic analysis of programs using expectations [22, 11]

do not treat nondeterminism and thus are not applicable to distributed algorithms like
this at all.
As noted in Section 2, the explicit use of agent-strategies occurs again in decision

problems formulated as Markov decision processes [6]. Indeed the similarity between
Markov decision processes becomes increasingly tangible when we observe that the
key ideas of ‘probabilistic action’, ‘set of of policies’ and ‘cost’ underlying decision
processes correspond, respectively, to ‘result-distribution’, ‘nondeterminism’ and ‘post-
expectation’ in the quantitative logic. Moreover, the determination of extreme average
payoJs corresponds to our demonic (or angelic) interpretation of nondeterminism, G-
nessing an ungainly explicit reference to the policy by “quantifying it away”.
To see this more clearly, (as an example) we re-instate the explicit reference to

strategies in the program Chooser. Let G be a Boolean-valued function of the state,
which will model an agent’s strategy. Next we replace the abstract ‘P[]Q’ by the
Boolean choice ‘P if G then Q’ to obtain the following (deterministic) program.

(b := true) if {b = true}
else

(b := true) if G else (b := true 1=2 ⊕ b := false):

With nondeterminism removed, the above program is essentially an ordinary Markov
process, and for any (cost) function A we can calculate the expected payoJ, which we
denote by E:[G:Chooser]:A, as follows:

E:[G:Chooser]:A :=

A if {b = true}
else

A if G else
∫
F
A;

where F is a discrete distribution deGned by F:s := 1=(2× |S|), and |S| denotes the size
of the state space, S.

216 A.K. McIver / Theoretical Computer Science 282 (2002) 191–219

To see the connection with the wp semantics, we observe that∫
F
A ≡ wp:(b := true 1=2 ⊕ b := false):A

and therefore by minimising over all strategies and comparing with DeGntion 2.2 we
see that

wp:Chooser:A = �{E:[G:Chooser]:A |G : S → {0; 1}}:
Similarly, it is possible to show the correspondence to a general program prog∈HS,
by replacing the nondeterministic choice as a general choice over all strategies. This
means that each Gxed strategy of the agent turns the program into an ordinary Markov
process as in the above example. In this way, we are able to formulate standard decision
problems succinctly as expressions in the logic.
Examples include the ‘Grst passage cost problem’ [6, p. 28] and the ‘expected dis-

counted cost problem’ [6, p. 20]. We discuss those in turn.
The Grst passage cost problem describes the task of calculating the least possible

probability of ever reaching a set of states determined by a stated predicate A. The
probability is in respect of an underlying transition system deGned as a range of poli-
cies, dependent on the current state, and each policy selects a (probabilistic) transition.
In our notation the problem corresponds to evaluating the expression

(�X · A � wp:prog:X) (12)

(Notice that from Fig. 4 that is exactly ✸A with © interpreted as wp:prog.)
The expected discounted cost problem describes the task of calculating the least

possible expected discounted payo; incurred in reaching A. Again the expected payoJ
is in respect of an underlying decision process. The discounted cost is deGned to be
pnA if it took n steps to reach A, where 0¡p61, and it is called the ‘discount factor’.
As an expression in the quantitative logic, it is a special case of the # operator:

(�X · A+ p× wp:prog:X):

Having seen above that decision problems may be formulated in the quantitative
logic, we are encouraged to export more techniques common to program calculi and
to look for diJerent and arguably simpler proofs to other results related to the original
decision problems. (Examples of program-oriented techniques are ‘healthiness condi-
tions’, ‘reGnement’ and the ‘least Gxed point’ property. 9)

For example, let us consider the question of the existence of ‘optimal strategies’ [6,
Chap. 3]. For a decision problem formulated in the quantitative logic as an expression
F(wp:prog) 10 an optimal strategy corresponds to Gnding a deterministic reGnement

9 The least Gxed point property is stated as follows: f :D→D is deGned on a partially ordered set (D;6)
and if f:�6�, then �f6�.
10 For example above at (12) our F is

('t · (�X · A � t: X)).

A.K. McIver / Theoretical Computer Science 282 (2002) 191–219 217

prog′ of prog such that F(wp:prog′)≡F(wp:prog). (Recall that deterministic programs
have no nondeterminism, and thus represent Markov decision processes possessing a
unique strategy.)
For the Grst passage cost problem, we show the existence of an optimal strategy

as follows. Note Grst that the healthiness conditions of HS guarantee that there is a
deterministic reGnement prog� prog′ such that

A � wp:prog′:(✸A) ≡ A � wp:prog:(✸A) ≡ ✸A; (13)

where we use ✸A for (�X · A�wp:prog:X); recall that we are interpreting © as
wp:prog, and that prog only depends on the ‘current state’ rather than on some history
variable. (The existence of an optimal strategy for a single step of the decision process
would be an assumption to the original problem.)
Notice that we now have ✸A as a Gxed point of the monotone transformer ('X · A

�wp:prog′:X). We can now reason that prog′ represents an optimal strategy for the
cost problem as well, namely that (�X · A�wp:prog′:X)≡ (�X · A�wp:prog:X). The
argument now takes only four steps:

(�X · A�wp:prog′:X)
W (�X · A�wp:prog:X) (2); monotonicity
≡ ✸A Fig. 4; © :=wp:prog
W (�X · A�wp:prog′:X) (13); least Gxed point property

and we can deduce the required equality.
The existence of an optimal strategy for the discounted cost problem is proved with

the same reasoning. It will be interesting to discover whether any other results to
decision problems have equally simple proofs in the quantitative logic.

Appendix. More invariants

Besides Block we use the (characteristic) invariants AdjBlock and Double, where

Block W AdjBlock W Double;

and

AdjBlock := (∃i · (li ∧ ri+1) ∧ ¬(Li−1 ∧ Ri+2)) ∨ Double

Double := (∃i · (Li ∧ (ri+1 ∨ Ri+1) ∨ (Ri+1 ∧ (li ∨ Li)) ∨

(∃i · (li ∧ ri+1 ∧ (li−1 ∨ Li−1 ∨ ri+2 ∨ Ri+2)) ∨

Eat:

From within Block it takes no more than 2 rounds to establish AdjBlock, from there
it takes no more than 8 rounds to establish Double and then at most 2 rounds to

218 A.K. McIver / Theoretical Computer Science 282 (2002) 191–219

D0 := (∃i · (Li ∧ (ri+1 ∨ Ri+1)) ∨ ((Li ∨ li) ∧ Ri+1)) ∧ ¬Eat
D1 := (∃i · (li ∧ ri+1) ∧ ((ri+2 ∨ Ri+2 ∨ li−1 ∨ Li−1)) ∧ ¬(D0 ∨ Eat)

¬Eat ∧ Double can be decomposed into two (pairwise) disjoint predicates D0; D1. The deGnitions assume
that Double holds. The invariants used to calculate the expected number of visits to each Di are given in
the table below.

A I I ′ p 1=(1− p)

D0 Eat I �D0 1 1

D1 Eat�D0 I �D1 1 1

Fig. 11. Invariants for the expected time to Eat from Double.

C0 := (∃i · (li ∧ ri+1) ∧ (Ti−1 ∨ Ti+2)) ∧ ¬(Double)
C1 := (∃i · li ∧ ri+1 ∧ Ri−1 ∨ Li+2) ∧ ¬(Double ∨ C0)
C2 := (∃i · li ∧ ri+1 ∧ Ri−1 ∨ Li+2) ∧ ¬(Double ∨ C0 ∨ C1)
C3 := (∃i · li ∧ ri+1 ∧ ri−1 ∧ li+2) ∧ ¬(Double ∨ C0 ∨ C1 ∨ C2)

¬Double∧AdjBlock can be decomposed into four (pairwise) disjoint predicates C0; C1; : : : ; C6. The deGnitions
assume that AdjBlock holds. The invariants used to calculate the expected number of visits to each Ci are
given in the table below.

A I I ′ p 1=(1− p)

C0 Double I �C0=2 1=2 2

C1 Double�C0=2 I �C1=2 1=2 2

C2 Double�
(C0 + C1)=2 I �C2=2 1=2 2

C3 Double+
(C0 �C1 �C2)=2 I �C3=2 1=2 2

Fig. 12. The decomposition of ¬Double ∧ AdjBlock.

establish eating, together with the time to establish Block (Lemma 6.1) gives a total
of 34 rounds expected to observe eating.
The invariants used to establish the expected number of steps needed to satisfy Eat

and Double are set out, respectively, in Figs. 11 and 12.

A.K. McIver / Theoretical Computer Science 282 (2002) 191–219 219

References

[1] M. Ben-Ari, A. Pnueli, Z. Manna, The temporal logic of branching time, Acta Inform. 20 (1983)
207–226.

[2] K.M. Chandy, J. Misra, Parallel Program Design: A Foundation, Addison-Wesley, Reading, MA, 1988.
[3] L. de Alfaro, Temporal logics for the speciGcation of performance and reliability. Proc. STACS ’97,

Lecture Notes in Computer Science Vol. 1200, 1997.
[4] L. de Alfaro, Computing minimum and maximum reachability times in probabilistic systems, in:

CONCUR 99, Lecture Notes in Computer Science, Springer, Berlin, 1999, pp. 1–11.
[5] L. de Alfaro, From fairness to chance, Electron. Notes in Theoret. Comput. Sci. 22 (1999)

http:==www.elsevier.nl=locate=encts=volume22.html.
[6] C. Derman, Finite State Markov Decision Processes, Academic Press, New York, 1970.
[7] E.W. Dijkstra, A Discipline of Programming, Prentice-Hall International, Englewood CliJs, NJ, 1976.
[8] W. Feller, An Introduction to Probability Theory and its Applications, 2nd ed., Vol. 2, Wiley, New

York, 1971.
[9] H. Hansson, B. Jonsson, A logic for reasoning about time and probability, Formal Aspects Comput. 6

(5) (1994) 512–535.
[10] J. He, K. Seidel, A.K. McIver, Probabilistic models for the guarded command language, Sci. Comput.

Programming 28 (2,3) (1997) 171–192.
[11] D. Kozen, A probabilistic PDL, in: Proc. 15th ACM Symp. on Theory of Computing, ACM, New York,

1983.
[12] D. Kozen, Results on the propositional �-calculus, Theoret. Comput. Sci. 27 (1983) 333–354.
[13] D. Lehmann, M.O. Rabin, On the advantages of free choice: a symmetric and fully-distributed solution

to the Dining Philosophers Problem, in: Proc. 8th Ann. ACM Symp. on Principles of Programming
Languages, New York, 1981, ACM, pp. 133–138.

[14] A.K. McIver, Reasoning about eNciency within a probabilistic mu-calculus, Electron. Notes in Theoret.
Comput. Sci. 21 (1999). http:==www.elsevier.nl=locate=encts=volume22.html.

[15] C. Morgan, A.K. McIver, A probabilistic temporal calculus based on expectations, in: L. Groves, S.
Reeves (Eds.), Proc. Formal Methods PaciGc ’97, Springer, Berlin, 1997. See also PTL96 at http [19].

[16] C.C. Morgan, A.K. McIver, K. Seidel, Probabilistic predicate transformers, ACM Trans. Programming
Languages Systems 18 (3) (1996) 325–353.

[17] R. Segala, N. Lynch, I. Saias, Proving time bounds for randomized distributed algorithms, Proc. 13th
Ann. Symp. on Principles of Distributed Algorithms, 1994, pp. 314–323.

[18] A. Pnueli, L. Zuck, VeriGcation of multiprocess probabilistic protocols, Distributed Comput. (1) (1986)
53–72.

[19] PSG, Probabilistic Systems Group: Collected Reports. http:==www.comlab.ox.ac.uk=oucl=groups=
probs=bibliography.html.

[20] J.R. Rao, Building on the UNITY experience: compositionality, fairness and probability in parallelism,
Ph.D. Thesis, Univ. of Texas at Austin, Austin, TX, 1992.

[21] A. Israeli, S. Dolev, S. Moran, Analyzing expected time by scheduler-luck games, IEEE Trans. Software
Eng. 22 (5) (1995) 429–439.

[22] M. Sharir, A. Pnueli, S. Hart, VeriGcation of probabilistic programs, SIAM J. Comput. 13 (2) (1984)
292–314.

[23] C. Stirling, Local model checking games, in: CONCUR 95, Lecture Notes in Computer Science, Vol.
962, Springer, Berlin, pp. 1–11, 1995, Extended abstract.

[24] M. Vardi, Automatic variGcation of probabilistic concurrent Gnite state programs, Proc. 25th Symp. on
the Foundations of Computer Science, Portland, Oregon, 1985, pp. 327–338.

