1,782 research outputs found

    An exact decomposition approach for the real-time Train Dispatching problem (v.2)

    Get PDF
    -Trains movements on a railway network are regulated by official timetables. Deviations and delays occur quite often in practice, demanding fast re-scheduling and re-routing decisions in order to avoid conflicts and minimize overall delay. This is the real-time train dispatching problem. In contrast with the classic ""holistic"" approach, we show how to decompose the problem into smaller subproblems associated with the line and the stations. The decomposition is the basis for a master-slave solution algorithm, in which the master problem is associated with the line and the slave problem is associated with the stations. The two subproblems are modeled as mixed integer linear programs, with their specific sets of variables and constraints. Similarly to the classical Bender's decomposition approach, the slave and the master communicate through suitable feasibility cuts in the variables of the master. By applying our approach to a number of real-life instances from single and double-track lines in Italy, we were able to (quickly) find optimal or near-optimal solutions, with impressive improvements over the performances of the current operating control systems. The new approach will be put in operation in such lines for an extensive on-field test-campaign as of April 2013. Follows SINTEF Technical Report A2327

    Modelling single line train operations

    Get PDF
    Scheduling of trains on a single line involves using train priorities for the resolution of conflicts. The mathematical programming model described in the first part of this paper schedules trains over a single line track when the priority of each train in a conflict depends on an estimate of the remaining crossing and overtaking delay. This priority is used in a branch and bound procedure to allow the determination of optimal solutions quickly. This is demonstrated with the use of an example. Rail operations over a single line track require the existence of a set of sidings at which trains can cross and/ or overtake each other. Investment decisions on upgrading the number and location of these sidings can have a significant impact on both customer service and rail profitability. Sidings located at insufficient positions may lead to high operating costs and congestion. The second part of this paper puts forward a model to determine the optimal position of a set of sidings on a single track rail corridor. The sidings are positioned to minimise the total delay and train operating costs of a given cyclic train schedule. The key feature of the model is the allowance of non-constant train velocities and non-uniform departure times

    Applying Operations Research techniques to planning of train shunting

    Get PDF
    In this paper, we discuss a model-based algorithmic approach for supporting planners in the creation of shunt plans for passenger trains. The approach provides an example of a mathematical model and a corresponding solution approach for model based support. We introduce a four-step solution approach and we discuss how the planners are supported by this approach. Finally, we present computational results for these steps and give some suggestions for further research.A* search;railway optimization;real world application;routing

    Integer programming based solution approaches for the train dispatching problem

    Get PDF
    Railroads face the challenge of competing with the trucking industry in a fastpaced environment. In this respect, they are working toward running freight trains on schedule and reducing travel times. The planned train schedules consist of departure and arrival times at main stations on the rail network. A detailed timetable, on the other hand, consists of the departure and arrival times of each train in each track section of its route. The train dispatching problem aims to determine detailed timetables over a rail network in order to minimize deviations from the planned schedule. We provide a new integer programming formulation for this problem based on a spacetime network; we propose heuristic algorithms to solve it and present computational results of these algorithms. Our approach includes some realistic constraints that have not been previously considered as well as all the assumptions and practical issues considered by the earlier works

    Shunting of Passenger Train Units in a Railway Station

    Get PDF
    In this paper we introduce the problem of shunting passenger trainunits in a railway station. Shunting occurs whenever train units aretemporarily not necessary to operate a given timetable. We discussseveral aspects of this problem and focus on two subproblems. Wepropose mathematical models for these subproblems together with asolution method based on column generation. Furthermore, a newefficient and speedy solution technique for pricing problems in columngeneration algorithms is introduced. Finally, we present computationalresults based on real life instances from Netherlands Railways.logistics;column generation;railway optimization;real world application

    Shunting of Passenger Train Units: an Integrated Approach

    Get PDF
    In this paper, we describe a new model for the Train Unit Shunting Problem. This model is capable of solving the matching and parking subproblems in an integrated manner, usually requiring a reasonable amount of computation time for generating acceptable solutions. Furthermore, the model incorporates complicating details from practice, such as trains composed of several train units and tracks that can be approached from two sides. Computation times are reduced by introducing the concept of virtual shunt tracks. Computational results are presented for real-life cases of NS Reizigers, the main Dutch passenger railway operator.Optimization;Passenger Railways;Shunting

    Solving the real-time Railway Traffic Management Problem with Benders decomposition

    Get PDF
    In railway, when a disruption occurs, the traffic may be perturbed, as a result, conflicts and delays may emerge. Modifying trains route and schedule to limit delay propagation in the network is the focus of the real-time Railway Traffic Management Problem (rtRTMP). In this work, we addressed the solution of the rtRTMP using a Benders decomposition approach. The decomposition algorithm is applyed to the mixed integer linear programming formulation of the problem. We test the algorithm to instances representing traffic in the junction of Gonesse, in France. The results are promising

    Solving the Train Dispatching Problem in Large Networks by Column Generation

    Full text link
    Disruptions in the operational flow of rail traffic can lead to conflicts between train movements, such that a scheduled timetable can no longer be realised. This is where dispatching is applied, existing conflicts are resolved and a dispatching timetable is provided. In the process, train paths are varied in their spatio-temporal course. This is called the train dispatching problem (TDP), which consists of selecting conflict-free train paths with minimum delay. Starting from a path-oriented formulation of the TDP, a binary linear decision model is introduced. For each possible train path, a binary decision variable indicates whether the train path is used by the request or not. Such a train path is constructed from a set of predefined path parts (\profiles{}) within a time-space network. Instead of modelling pairwise conflicts, stronger MIP formulation are achieved by a clique formulation. The combinatorics of speed profiles and different departure times results in a large number of possible train paths, so that the column generation method is used here. New train paths within the pricing-problem can be calculated using shortest path techniques. Here, the shadow prices of conflict cliques must be taken into account. When constructing a new train path, it must be determined whether this train path belongs to a clique or not. This problem is tackled by a MIP. The methodology is tested on practical size instances from a dispatching area in Germany. Numerical results show that the presented method achieves acceptable computation times with good solution quality while meeting the requirements for real-time dispatching.Comment: 12 pages, 4 figures, 2 table

    Operations research in passenger railway transportation

    Get PDF
    In this paper, we give an overview of state-of-the-art OperationsResearch models and techniques used in passenger railwaytransportation. For each planning phase (strategic, tactical andoperational), we describe the planning problems arising there anddiscuss some models and algorithms to solve them. We do not onlyconsider classical, well-known topics such as timetabling, rollingstock scheduling and crew scheduling, but we also discuss somerecently developed topics as shunting and reliability oftimetables.Finally, we focus on several practical aspects for each of theseproblems at the largest Dutch railway operator, NS Reizigers.passenger railway transportation;operation research;planning problems
    corecore