12,165 research outputs found

    Algorithms for Low-Distortion Embeddings into Arbitrary 1-Dimensional Spaces

    Get PDF
    We study the problem of finding a minimum-distortion embedding of the shortest path metric of an unweighted graph into a "simpler" metric X. Computing such an embedding (exactly or approximately) is a non-trivial task even when X is the metric induced by a path, or, equivalently, the real line. In this paper we give approximation and fixed-parameter tractable (FPT) algorithms for minimum-distortion embeddings into the metric of a subdivision of some fixed graph H, or, equivalently, into any fixed 1-dimensional simplicial complex. More precisely, we study the following problem: For given graphs G, H and integer c, is it possible to embed G with distortion c into a graph homeomorphic to H? Then embedding into the line is the special case H=K_2, and embedding into the cycle is the case H=K_3, where K_k denotes the complete graph on k vertices. For this problem we give - an approximation algorithm, which in time f(H)* poly (n), for some function f, either correctly decides that there is no embedding of G with distortion c into any graph homeomorphic to H, or finds an embedding with distortion poly(c); - an exact algorithm, which in time f\u27(H, c)* poly (n), for some function f\u27, either correctly decides that there is no embedding of G with distortion c into any graph homeomorphic to H, or finds an embedding with distortion c. Prior to our work, poly(OPT)-approximation or FPT algorithms were known only for embedding into paths and trees of bounded degrees

    Line-distortion, Bandwidth and Path-length of a graph

    Full text link
    We investigate the minimum line-distortion and the minimum bandwidth problems on unweighted graphs and their relations with the minimum length of a Robertson-Seymour's path-decomposition. The length of a path-decomposition of a graph is the largest diameter of a bag in the decomposition. The path-length of a graph is the minimum length over all its path-decompositions. In particular, we show: - if a graph GG can be embedded into the line with distortion kk, then GG admits a Robertson-Seymour's path-decomposition with bags of diameter at most kk in GG; - for every class of graphs with path-length bounded by a constant, there exist an efficient constant-factor approximation algorithm for the minimum line-distortion problem and an efficient constant-factor approximation algorithm for the minimum bandwidth problem; - there is an efficient 2-approximation algorithm for computing the path-length of an arbitrary graph; - AT-free graphs and some intersection families of graphs have path-length at most 2; - for AT-free graphs, there exist a linear time 8-approximation algorithm for the minimum line-distortion problem and a linear time 4-approximation algorithm for the minimum bandwidth problem

    Prioritized Metric Structures and Embedding

    Full text link
    Metric data structures (distance oracles, distance labeling schemes, routing schemes) and low-distortion embeddings provide a powerful algorithmic methodology, which has been successfully applied for approximation algorithms \cite{llr}, online algorithms \cite{BBMN11}, distributed algorithms \cite{KKMPT12} and for computing sparsifiers \cite{ST04}. However, this methodology appears to have a limitation: the worst-case performance inherently depends on the cardinality of the metric, and one could not specify in advance which vertices/points should enjoy a better service (i.e., stretch/distortion, label size/dimension) than that given by the worst-case guarantee. In this paper we alleviate this limitation by devising a suit of {\em prioritized} metric data structures and embeddings. We show that given a priority ranking (x1,x2,…,xn)(x_1,x_2,\ldots,x_n) of the graph vertices (respectively, metric points) one can devise a metric data structure (respectively, embedding) in which the stretch (resp., distortion) incurred by any pair containing a vertex xjx_j will depend on the rank jj of the vertex. We also show that other important parameters, such as the label size and (in some sense) the dimension, may depend only on jj. In some of our metric data structures (resp., embeddings) we achieve both prioritized stretch (resp., distortion) and label size (resp., dimension) {\em simultaneously}. The worst-case performance of our metric data structures and embeddings is typically asymptotically no worse than of their non-prioritized counterparts.Comment: To appear at STOC 201
    • …
    corecore