5 research outputs found

    Diffusion Weighted Imaging of the Neonatal Brain

    Get PDF
    Although in the last decades advances in fetal and neonatal medicine have reduced mortality in neonatal intensive care units in the Western world, the morbidity due to brain injury remains high. Patterns of neonatal brain injury can be roughly divided in (1) term and (2) preterm patterns. Table 1 shows the number of infants admitted to the NICU in the Sophia Children’s Hospital between March 2008 and March 2010 with a typical ‘neurological’ diagnosis. The table highlights differences in diagnoses between preterm and term infants in relation to gender. In preterm infants the most common diagnoses are: persistent flaring (hypersignal intensity seen in periventricluar white matter using cranial ultrasound), intraventricular haemorrhage and venous infarction. In term infants perinatal asphyxia and perinatal stroke are most often reported

    Novel methodologies and technologies for the multiscale and multimodal study of Autism Spectrum Disorders (ASDs)

    Get PDF
    The aim of this PhD thesis was the development of novel bioengineering tools and methodologies that provide a support in the study of ASDs. ASDs are very heterogeneous disturbs and their abnormalities are present both at local and global level. For this reason a multimodal and multiscale approach was followed. The analysis of microstructure was executed on single Purkinje neurons in culture and on organotypic slices extracted from cerebella of GFP wild-type mice and animal models of ASDs. A methodology for the non-invasive imaging of neurons during their growth was set up and a software called NEMO (NEuron MOrphological analysis tool) for the automatic analysis of morphology and connectivity was developed. Microstructure properties can be inferred also in vivo through the quite recent technique of Diffusion Tensor Imaging (DTI). DTI studies in ASDs are based on the hypothesis that the disorder involves aberrant brain connectivity and disruption of white matter tracts between regions implicated in social functioning. In this study DTI was used to investigate structural abnormalities in the white matter structure of young children with ASDs. Moreover the neurostructural bases of echolalia were investigated. The functionality of the brain was analyzed through Functional Magnetic Resonance Imaging (fMRI) using a novel task based on face processing of human, android and robotic faces. A case-control study was performed in order to study how the face processing network is altered in ASDs and how robots are differently processed in ASDs and control groups. Measurements characterizing physiology and behavior of ASD children were also collected using an innovative platform called FACE-T (FACE-Therapy). FACE-T consists of a specially equipped room in which the child, wearing unobtrusive devices for recording physiological and behavioral data as well as gaze information, can interact with an android (FACE, Facial Automaton for Conveying Emotions) and a therapist. The focus was on ECG, as from the analysis of power spectrum density of ECG it is possible to extract features related to the autonomic nervous system that is correlated with brain functionality. These studies give new insights in the study of ASDs exploring aspects not yet addressed. Moreover the methodologies and tools developed could help in the objective characterization of ASD subjects and in the definition of a personalized therapeutic protocol for each child

    Structural brain networks from diffusion MRI: methods and application

    Get PDF
    Structural brain networks can be constructed at a macroscopic scale using diffusion magnetic resonance imaging (dMRI) and whole-brain tractography. Under this approach, grey matter regions, such as Brodmann areas, form the nodes of a network and tractography is used to construct a set of white matter fibre tracts which form the connections. Graph-theoretic measures may then be used to characterise patterns of connectivity. In this study, we measured the test-retest properties of such networks by varying several factors affecting network construction using ten healthy volunteers who underwent a dMRI protocol at 1.5 T on two separate occasions. High resolution T1-weighted brains were parcellated into regions-of-interest and network connections were identified using dMRI and two alternative tractography algorithms, two alternative seeding strategies, constraints on anatomical plausibility and three alternative network weightings. Test-retest performance was found to improve when: 1) seeding from white matter, rather than grey; and 2) using probabilistic tractography, rather than deterministic. In terms of network weighting, a measure of streamline density produced better test-retest performance than tract-averaged diffusion anisotropy, although it remains unclear which is most representative of the underlying axonal connections. These findings were then used to inform network construction for two further cohorts: a casecontrol analysis of 30 patients with amyotrophic lateral sclerosis (ALS) compared with 30 age-matched healthy controls; and a cross-sectional analysis of 80 healthy volunteers aged 25– 64 years. In both cases, networks were constructed using a weighting reflecting tract-averaged fractional anisotropy (FA). A mass-univariate statistical technique called network-based statistics, identified an impaired motor-frontal-subcortical subnetwork (10 nodes and 12 bidirectional connections), consistent with upper motor neuron pathology, in the ALS group compared with the controls. Reduced FA for three of the impaired network connections, which involved fibres of the cortico-spinal tract, were significantly correlated with the rate of disease progression. Cross-sectional analysis of the 80 healthy volunteers was intended to provide supporting evidence for the widely reported age-related decline in white matter integrity. However, no meaningful relationships were found between increasing age and impaired connectivity based on global, lobar and nodal network properties – findings which were confirmed with a conventional voxel-based analysis of the dMRI data. In conclusion, whilst current acquisition protocols and methods can produce networks capable of characterising the genuine between-subject differences in connectivity, it is challenging to measure subtle white matter changes, for example, due to normal ageing. We conclude that future work should be undertaken to address these concerns

    Multi-Agent Modeling for Integrated Process Planning and Scheduling

    Get PDF
    Multi-agent systems have been used for modelling various problems in the social, biological and technical domain. When comes to technical systems, especially manufacturing systems, agents are most often applied in optimization and scheduling problems. Traditionally, scheduling is done after creation of process plans. In this paper, agent methodology is used for integration of these two functions. The proposed multi-agent architecture provides simultaneous performance of process planning and scheduling and it consists of four intelligent agents: part and job agents, machine agent, and optimization agent. Verification and feasibility of a proposed approach is conducted using agent based simulation in AnyLogic software

    Multi-Agent Modeling for Integrated Process Planning and Scheduling

    Get PDF
    Multi-agent systems have been used for modelling various problems in the social, biological and technical domain. When comes to technical systems, especially manufacturing systems, agents are most often applied in optimization and scheduling problems. Traditionally, scheduling is done after creation of process plans. In this paper, agent methodology is used for integration of these two functions. The proposed multi-agent architecture provides simultaneous performance of process planning and scheduling and it consists of four intelligent agents: part and job agents, machine agent, and optimization agent. Verification and feasibility of a proposed approach is conducted using agent based simulation in AnyLogic software
    corecore