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Abstract

Structural brain networks can be constructed at a macroscopic scale using diffusion magnetic

resonance imaging (dMRI) and whole-brain tractography. Under this approach, grey matter

regions, such as Brodmann areas, form the nodes of a network and tractography is used to con-

struct a set of white matter fibre tracts which form the connections. Graph-theoretic measures

may then be used to characterise patterns of connectivity.

In this study, we measured the test-retest properties of such networks by varying several factors

affecting network construction using ten healthy volunteers who underwent a dMRI protocol

at 1.5 T on two separate occasions. High resolution T1-weighted brains were parcellated into

regions-of-interest and network connections were identified using dMRI and two alternative

tractography algorithms, two alternative seeding strategies, constraints on anatomical plausi-

bility and three alternative network weightings. Test-retest performance was found to improve

when: 1) seeding from white matter, rather than grey; and 2) using probabilistic tractogra-

phy, rather than deterministic. In terms of network weighting, a measure of streamline density

produced better test-retest performance than tract-averaged diffusion anisotropy, although it

remains unclear which is most representative of the underlying axonal connections.

These findings were then used to inform network construction for two further cohorts: a case-

control analysis of 30 patients with amyotrophic lateral sclerosis (ALS) compared with 30

age-matched healthy controls; and a cross-sectional analysis of 80 healthy volunteers aged 25–

64 years. In both cases, networks were constructed using a weighting reflecting tract-averaged

fractional anisotropy (FA). A mass-univariate statistical technique called network-based statis-

tics, identified an impaired motor-frontal-subcortical subnetwork (10 nodes and 12 bidirec-

tional connections), consistent with upper motor neuron pathology, in the ALS group compared

with the controls. Reduced FA for three of the impaired network connections, which involved

fibres of the cortico-spinal tract, were significantly correlated with the rate of disease progres-

sion. Cross-sectional analysis of the 80 healthy volunteers was intended to provide supporting

evidence for the widely reported age-related decline in white matter integrity. However, no

meaningful relationships were found between increasing age and impaired connectivity based

on global, lobar and nodal network properties – findings which were confirmed with a conven-

tional voxel-based analysis of the dMRI data.

In conclusion, whilst current acquisition protocols and methods can produce networks capable

of characterising the genuine between-subject differences in connectivity, it is challenging to

measure subtle white matter changes, for example, due to normal ageing. We conclude that

future work should be undertaken to address these concerns.
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Lay Summary

The structural organisation of the human brain can be mapped using diffusion magnetic reso-

nance imaging (dMRI) and a computational technique called tractography. Brain organisation

can be represented as a network where distinct regions of the cerebral cortex form the network

nodes. Tractography can map the connections between these nodes by estimating the collective

wiring of millions of axonal connections between nerve cells.

In this study, we measured the reliability of such networks by varying several factors affect-

ing network construction using ten healthy human volunteers who underwent a dMRI protocol

on two separate occasions. High resolution scans of the brain were automatically divided

into regions-of-interest and network connections were identified using dMRI and two alter-

native tractography approaches, two alternative tractography seeding strategies, constraints on

anatomical plausibility and three alternative network weightings. Network reliability was found

to improve when: 1) seeding from the white matter of the brain, rather than the grey matter;

and 2) using probabilistic tractography, rather than deterministic. However, in terms of net-

work weightings it remained unclear which provided the most accurate representation of the

biological connections within the brain.

These findings were then used to inform network construction for two further groups: an anal-

ysis of 30 patients with amyotrophic lateral sclerosis (ALS) compared with 30 healthy con-

trols; and an analysis of 80 healthy volunteers aged 25–64 years. A statistical technique called

network-based statistics identified an impaired motor network in the ALS group when com-

pared with the controls. This network was consistent with the understanding of the disease

and was localised around brain regions known to be associated with motor control and move-

ment. Additionally, three of the impaired network connections, which involved fibres of the

cortico-spinal tract, were significantly correlated with the rate of disease progression. Anal-

ysis of the 80 healthy volunteers was intended to provide supporting evidence for the widely

reported age-related decline in brain organisation. However, no meaningful relationships were

found between increasing age and impaired network connectivity.

In conclusion, whilst these methods can produce networks capable of characterising large dif-

ferences in connectivity from individual to individual, it remains challenging to measure subtle

differences in connectivity, for example, due to normal ageing. We conclude that future work

should be undertaken to address these concerns.
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Chapter 1

Introduction

Connectomics is the study of connectomes, which map the connections of the brain as a net-

work. The ultimate aim of the connectome approach is, perhaps, a full cellular scale map of

the human brain, outlining each and every neuron, axon and synapse. However, the technolo-

gies to achieve this resolution in mammals have not yet been realised and for now only gross

approximations at a macroscopic scale are possible in vivo with techniques, such as magnetic

resonance imaging (MRI) and tractography. Nevertheless, these techniques have the potential

to map the collective wiring of many trillions of axonal fibres and may provide clues on how

cerebral white matter structure correlates with function, cognition and behaviour. Although

maps of brain connectivity have previously been demonstrated in human volunteers and are

widely used to measure patterns of connectivity, currently there are a lack of studies which

assess the reliability of the resulting networks. In this work we explored methods for con-

structing such networks by imaging healthy human volunteers and assessing various aspects

affecting reliability. These findings were then used to inform analyses of structural brain con-

nectivity associated with both a neurodegenerative condition and with normal ageing.

The organisation of this thesis is as follows. Chapter 2 begins with a description of brain struc-

ture, the basic principles of MRI and diffusion MRI (dMRI), a description of the connectome

and an overview of current techniques used to construct structural networks. This leads us to

the shortcomings of current approaches and a motivation for this work. Chapter 3 describes

our methodology, including MRI acquisition, segmentation of high-resolution structural MRI

data, image registration, dMRI processing, tractography and network construction and analysis.

Chapter 4 outlines the analysis and findings from building structural networks and assessing

the test-retest reliability. We assessed repeat scans of ten healthy volunteers by varying sev-

eral factors affecting the construction of networks. We compared two alternative tractography

algorithms (deterministic and probabilistic), two seeding approaches (grey and white matter),

and three alternative network weightings (streamline density, streamline density with length

1



2 Chapter 1. Introduction

correction and a measure of tract-averaged diffusion anisotropy). Chapter 5 describes an anal-

ysis of the connectivity between brain regions in a group of 30 amyotrophic lateral sclerosis

(ALS) patients when compared with a group of age-matched healthy controls. An established

statistical technique called network-based statistics (NBS) was used, without a priori selected

regions, to identify a subnetwork of reduced connectivity in the ALS group compared with the

controls. Chapter 6 describes the findings of a structural network analysis in a group of 80

healthy volunteers undergoing normal ageing, between 25 and 64 years of age. Such a cross-

sectional analysis has the potential to find supporting evidence, in terms of brain organisation,

for the widely reported age-related decline of white matter integrity and we carried out a num-

ber of statistical analyses to assess the relationships between age and brain structure. Finally,

Chapter 7 presents a discussion of the findings from the three results chapters. We focus on the

relative merits and limitations of using such networks obtained from dMRI and tractography

in cohorts of healthy volunteers, ageing and disease. This is followed by a discussion of the

current challenges facing connectome approaches and some possible avenues of future work.

To our knowledge, this work was the first to directly compare probabilistic and determinis-

tic tractography and alternative seeding strategies in a test-retest network analysis. Our key

findings were: 1) Probabilistic tractography was found to perform better than a deterministic

method; 2) Performance was improved when seeding from white matter, rather than grey. 3)

Thresholding of network weights must be applied with caution in order to remove spurious

connections while retaining genuine patterns of connectivity. Whilst current acquisition proto-

cols and methods can produce networks capable of characterising the genuine between-subject

differences in connectivity for gross structural differences in ALS, it is challenging to measure

subtle white matter changes, for example, due to normal ageing. Overall, our results highlight

concerns with reliably measuring nodal network properties. We conclude that future work

should be undertaken to address these concerns.

1.1 Notation and terminology

Note that in this work, we are chiefly concerned with the structural network of the adult human

brain imaged through dMRI – other connectome technologies and the nervous systems of other

organisms are discussed where appropriate. We primarily use the term network to refer to a

map of brain organisation, but note that the terms connectome and graph can be considered

equivalent and are used interchangeably on occasion. Except where specified, we use the

notation, mean ± standard deviation, in our results.



Chapter 2

Background

2.1 Overview

The human brain is, by most accounts, the most complex known object, formed from an ex-

tremely vast and largely unmapped network of interconnected nerve cells. Neuroscience seeks

to understand how neurons within this network give rise to neural processing, perception, learn-

ing and memory and ultimately higher level cognitive functions and behaviours. Connectomics

is a recent development1 in neuroscience concerned with mapping the structural and functional

connections within the brain at various scales (Hagmann, 2005; Sporns et al., 2005). For in-

stance, the structural connectome may be explored at a macroscopic scale in vivo through dMRI

and whole-brain tractography. Under this approach, segmented cortical areas, such as Brod-

mann areas, form the nodes of a network and tractography is used to construct a set of white

matter fibre tracts which form the connections. Graph-theoretic measures may then be used to

characterise patterns of connectivity. Such techniques have the potential to map the collective

wiring of many trillions of axonal fibres and may provide detailed information on how cere-

bral white matter structure correlates with function, and potentially dysfunction, in health and

disease.

The organisation of this chapter is as follows. Firstly, a description of the nervous system

and the organisation of the brain is outlined. The basic principles of MRI and dMRI are then

outlined and the modalities required for producing a structural connectome are described. An

overview of tractography techniques is then presented, followed by a description of the con-

nectome and current techniques used in network construction. Finally, this leads us to the

shortcomings of the current approaches and a motivation for this work.

1or more precisely, a comprehensive reinterpretation of an old idea (Catani et al., 2013).

3



4 Chapter 2. Background

Figure 2.1: Diagram of a typical neuron. (Adapted from Wikimedia Commons, http:

//commons.wikimedia.org.)

2.2 Organisation of the brain

This section outlines some basic concepts of neuroscience and neural connections. For a more

comprehensive introduction to the neurosciences refer to Bear et al. (2007) or Purves et al.

(2012).

Modern neuroscience is based on the neuron doctrine, which has established that the nervous

system is formed of discrete interconnected cells (Jones, 1999). Neurons (nerve cells) are

the electrically excitable cells within the nervous system involved with neural processing and

transmission of information. The human brain contains approximately 90 billion neurons and

it is estimated that on average each neuron may form synapses with up to ten thousand other

neurons (Herculano-Houzel, 2009) to create an astonishingly complex computational network.

A typical neuron (Figure 2.1) comprises a cell body (soma) and two types of projection called

dendrites and axons. A signal from a ‘firing’ neuron is caused by the generation of an electrical

signal from within the soma. The axon, a cable-like projection originating from the cell body,

carries the electrical signal along its length. Axons vary considerably in length, from a frac-

tion of a millimetre to many centimetres. Lengthier axonal projections are typically covered

http://commons.wikimedia.org
http://commons.wikimedia.org
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by layers of myelin, a fatty dielectric insulating sheath, which serves to efficiently propagate

electrical signals along the axon’s length. It is the microscopic structure of this fatty tissue,

composed largely of lipids, water and proteins, that permits dMRI to probe axonal organisa-

tion. The diameter, length and myelination of axons is known to vary widely by brain region,

and a single axon may have up to 100 myelin layers. Dendrites are another type of branched

projection originating from a nerve cell that typically receive inputs from other neurons. A

synapse is the location where an efferent neuron connects to the dendritic tree of an afferent

neuron. At synapses, an electrical potential may trigger the release of neurotransmitters as a

chemical signal across the synapse.

Although neurons are extremely numerous within the nervous system, another family of cells

called neuroglia (glial cells or oligodendrocytes), are even more numerous (Herculano-Houzel,

2009). Various types of glial cells perform functions within the nervous system, such as home-

ostatic mechanisms, formation of myelin and nourishment of neurons. Glia are not considered

to be involved in information processing2. Note that the healthy human brain continually un-

dergoes alterations from birth to adulthood to old age. These alterations involve axonal growth,

dendritic proliferation, changes in myelination and changes in synaptic plasticity (Bystron

et al., 2008).

At a macroscopic scale, neuronal processing is communicated to distant brain regions along

white matter pathways comprised of many axons, where coherent bundles of axons with the

same trajectory are called fascicles. Mapping these pathways is an essential part of understand-

ing brain structure and, ultimately, function. Connections from one brain region to another may

be direct or indirect. For example, the well-studied central visual pathway projects from the

optic nerve to the primary visual cortex via the optic chiasm and lateral geniculate nucleus.

The majority of axonal fibres in the cerebrum connect from one cortical area to another, rather

than to subcortical areas. The great majority of fibres connecting the two cerebral hemispheres

travel through the corpus callosum (Figure 2.2). A small fraction of interhemispheric fibres

pass through the anterior commissure, and other routes of communication pass through the

hippocampal commissure or, indirectly, via subcortical connections (Funnell et al., 2000).

2.2.1 Neuroanatomy

Neuroscience is often chiefly concerned with the organisation of the central nervous system

(CNS), formed of the brain and the spinal cord. The CNS is distinct from the peripheral nervous

system, which consists of the nerves throughout the rest of the body.

2Some researchers have suggested that neuroglia have a role in information processing (Araque et al., 1999),
however, this notion has been largely disregarded in contemporary connectomics.
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Figure 2.2: Left) Sagittal view of the four major lobes in the cerebrum. Right) Illustration of sev-

eral anatomical structures visible in a median sagittal section. (Credit: Manuel de L’anatomiste

published in 1883 by Charles Morel and Mathias Duval, and Gray’s Anatomy of the Human

Body, originally published in 1918.)

Since the earliest days of neuroscience, researchers have sought to classify the structure of

the brain. At a macroscopic scale, the simplest distinction is between grey matter (comprised

mainly of neurons, unmyelinated axons and glial cells) and the inter-connecting white matter

(myelinated axons and glial cells). The brain is divided into two roughly symmetrical and

highly interconnected cerebral hemispheres along the medial longitudinal fissure. The largest

white matter structure in the brain, the corpus callosum, is formed from a mass of axonal fi-

bres which cross the longitudinal fissure, connecting the cerebral hemispheres, thus facilitating

interhemispheric communication (Gazzaniga, 1998).

The grey matter in each cerebral hemisphere is classified into two distinct surfaces, namely the

neocortex and the subcortex. The neocortex (or often simply cortex) is a thin highly folded

sheet of neuronal cells on the outer (pial) surface of the brain. Typically, the cerebral cortex

has six distinct neuronal layers. A sulcus is a characteristic groove in the cortex, and a gyrus

is a ridge. Each cerebral hemisphere is divided into four distinct lobes (Figure 2.2), namely

occipital, parietal, temporal and frontal. The subcortical area is an evolutionary more ancient

grouping of neuronal units deep within the brain localised around the brain stem. Subcortical

structures include the thalamus, amygdala and hippocampus. The cerebellum (little brain) is

a brain region distinct from the cerebrum and located underneath the cerebral hemispheres.

The cerebellum is primarily involved in motor control and although it contains more than three

times as many neurons as the neocortex (Herculano-Houzel, 2009), it is rarely considered to

have a role in cognitive function and the majority of connectome mapping and cognitive studies
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exclude it.

In the early part of the twentieth century cytoarchitecture methods allowed Brodmann to de-

lineate around 47 distinct areas in the cortex using post-mortem Nissl staining. Subsequent

research has allowed researchers to further subdivide and refine these areas. Neuroanatomical

regions may be divided by various criteria, including cytoarchitecture, anatomy (e.g. gyral

and sulcal) and function (i.e. neural units sharing distinguishing functional properties). It is

not yet clear whether structurally or functionally defined regions are more appropriate for a

connectome mapping task (Hagmann et al., 2010a).

The nervous system is bathed in cerebrospinal fluid (CSF) which is circulated through the

ventricular system – a continuous system of channels and reservoirs connecting the ventricles

and spinal cord. This fluid serves to provide chemical stability and to cushion the soft tissue

of the nervous system. CSF also exhibits well known properties of water molecule diffusion

which are measurable with dMRI, specifically high mean diffusivity and very low diffusion

anisotropy (see Section 2.4).

2.3 Magnetic resonance imaging

MRI is a non-invasive imaging technique capable of measuring the internal structure of tis-

sue in two or three dimensions. MRI was developed from the principles of nuclear magnetic

resonance (NMR) to measure the collective magnetic properties of atomic nuclei. Since the

development of the modern MRI scanner in the 1970s, MRI has become an extensively used

medical imaging technique, particularly for soft tissues such as muscles, the heart, the brain

and tumours. The dMRI modality was developed in the 1980s to measure the diffusion of water

molecules in tissue.

This section outlines some basics of MRI and dMRI referred to in this work. For a comprehen-

sive introduction, see McRobbie et al. (2006) and Jones (2010).

2.3.1 Basic principles of magnetic resonance

A proton has basic physical properties including mass, positive electric charge and spin. A

proton’s spin produces a small but measurable magnetic field. Normally, the magnetic align-

ment of protons is randomly distributed (Figure 2.3). An MRI scanner uses a superconducting

magnet to create a strong external magnetic field, B0 (measured in Tesla units), to align the

magnetisation of protons within tissue. Although protons may actually align with or against

B0, a measurable majority will align with the magnetic field as it is the lowest energy state
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B0

Figure 2.3: Protons with spins randomly distributed (left) and aligned in a strong external mag-

netic field, B0 (right).

B0

Precessional
orbit

Spinning
nucleus

Figure 2.4: Precessional orbit of spinning nucleus around the axis of B0.

(Figure 2.3). Although the energy of a single proton is very small, it is the large number of

protons which produce a measurable signal. Within the body, water has the largest proportion

of protons and soft-tissues such as fat and muscle have somewhat fewer.

Spinning protons precess about the axis of the B0 field (Figure 2.4). The frequency of pre-

cession is directly proportional to the strength of the magnetic field as defined by the Larmor

equation, ω0 = γB0, where ω0 is the resonance frequency and γ is the gyromagnetic ratio con-

stant measured in Hz/Tesla.

Radio frequency (RF) fields are used to systematically alter the alignment of the magnetic field.

If an RF pulse is applied at the resonance frequency some protons will absorb the energy and

their spin is altered as a function of the strength and duration of the RF pulse. Following the RF

pulse, the absorbed RF energy is retransmitted at the resonance frequency. As the RF energy

is retransmitted, the spin alters over a time course T1, the spin-lattice relaxation time, from a

high energy state to a low energy sate, thereby realigning with B0. The recovery over T1 is

dependent on the field strength and the proton density in different tissues.
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Following the RF pulse, protons also undergo spin-spin interaction as the magnetic field of

excited protons interact. These temporary, random interactions between nearby protons cause

a cumulative loss of phase, resulting in an exponential signal decay over a time course, T2,

the spin-spin relaxation time. Like T1 relaxation, the signal decay resulting from spin-spin

interaction is measurable. The T2 signal loss is largely determined by the chemical make-up of

tissue.

MR acquisition defines the parameters echo time (TE) and repetition time (TR). During MRI

acquisition, RF fields are systematically applied to alter the alignment of protons within tissue.

This produces a RF signal detectable by the scanner that is recorded to construct an image. By

using field gradients in different directions 2D images or 3D volumes can be acquired.

2.3.2 T1-weighted imaging

T1-weighted imaging refers to an acquisition which depends on the spin-lattice relaxation time,

acquired using either spin-echo or gradient-echo sequences. The T1-weighted signal is depen-

dent on the field strength and tissue type. The measured signal depends on tissue properties,

where water appears dark and denser fatty tissues appear bright. Such imaging is commonly

used as a structural reference and to provide contrast between grey and white matter.

2.3.3 T2-weighted imaging

T2-weighted imaging refers to an acquisition which depends on the spin-spin relaxation time.

The T2-weighted signal is dependent on the chemical makeup of tissue and to a lesser extent the

field strength. Under T2-weighted imaging fatty tissues appear dark and water or tissues con-

taining fluid appear brighter. Such images are used to distinguish pathology, such as tumours

or oedema relating to stroke or brain injury.

2.3.4 Echo-planar imaging

Echo-planar imaging (EPI) is a fast acquisition method developed in the 1990s, which vastly

reduces the total acquisition time and motion artefacts by performing continuous signal readout

by means of a gradient-echo train (Stehling et al., 1991). EPI uses a pulse sequence in which

multiple echoes of different phase steps are acquired using rephasing gradients. EPI is most

commonly used for acquiring an entire 2D slice using a sequential ‘single-shot’ readout in a

single TR over a Cartesian grid. However, EPI has limited spatial resolution and single-shot

sequences are susceptible to artefacts relating to ghosting, gradient errors, B0 inhomogeneities

and saturation. The inherent geometric distortions from magnetic field inhomogeneities are



10 Chapter 2. Background

due to the rapid sampling of the gradient-echo train. These distortions are partly predictable

and correctable, but in practice artefacts cannot be entirely eliminated (Jones et al., 2013).

2.4 Diffusion MRI

dMRI is an acquisition sensitive to the diffusion of water molecules in biological tissue. dMRI

has been used clinically for assessing ischaemic damage following stroke (Moseley et al.,

1990), but crucially it can also be used to probe the organisation of white matter and provide

a quantitative assessment of the brain’s white matter microstructure (Le Bihan and Johansen-

Berg, 2012).

2.4.1 Diffusion and thermodynamics

Diffusion is a basic property of thermodynamics. Water molecules within a free liquid undergo

random motion due to thermal energy, known as Brownian motion. The direction of motion is

random and molecules will regularly change course as they collide with other molecules. In

the absence of barriers water molecules diffuse randomly and equally in all directions and the

distribution of displacements will be Gaussian, which is termed isotropic diffusion. However,

in the presence of microscopic biological barriers, such as cell membranes, the distribution

of displacements will tend to depend on the orientation of these barriers, which is termed

anisotropic diffusion.

Considering diffusion in a single direction, the concentration of fluid is denoted by C(x, t) at

location x and time t. The diffusivity of a fluid is denoted by D. If we assume that there are n

molecules at a single location x = 0 at time t = 0, then Diffusion follows,

C(x, t) =
n√

4πDt
exp
(
− x2

4Dt

)
, (2.1)

as described by Einstein (1905). This equation can be extended to three dimensions to account

for isotropic and also anisotropic diffusion.

The principle of dMRI is that the properties of biological tissue fundamentally affect the direc-

tion of water molecule diffusion at body temperature. dMRI permits quantitive measurement

of the gross motion of water molecules in vivo along any number of predefined directions. In

the brain, the normally random Brownian motion of extracellular water molecules is restricted

or hindered by cellular barriers such as cell membranes, microtubules or the myelin of axonal

fibres. Typically, white matter tracts are coherent macroscopic structures, formed of micro-

scopically ordered axons and microtubules. The resulting water diffusion is then constrained
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Figure 2.5: Left) A molecule undergoing Brownian motion due to thermal energy. Right) Tubular

structures, e.g. axonal fibres, causing a molecule to preferentially diffuse along the direction of

the fibre (anisotropic diffusion).

by these barriers, resulting in measurable anisotropic diffusion. The degree to which white mat-

ter is ordered will have a direct and measurable impact on the dMRI signal along the observed

direction. Due to directional differences in water diffusion across different structures it is pos-

sible to estimate the principal orientation of water diffusion which depends on the underlying

tissue structure.

2.4.2 Diffusion acquisition

MRI can be sensitised to the diffusion of water molecules in biological tissue by applying ad-

ditional magnetic field gradients along directions of interest, where the signal corresponds to

the magnitude of diffusion. Instead of applying only a homogeneous magnetic field B0, the

homogeneity is varied by a pulsed field gradient. The methods for dMRI acquisition were

first developed in the 1980s when Le Bihan introduced the first diffusion-sensitising pulse se-

quences and the concept of the b-value to combine diffusion-sensitising and imaging gradient

RF pulses (Le Bihan et al., 1986). Le Bihan also introduced the apparent diffusion coefficient

(ADC) to measure diffusion in tissue. The diffusion coefficient is termed apparent because the

underlying diffusion process is known to be complex in biological tissues and many different

mechanisms act together to produce the measure of diffusion. The b-value is used to param-

eterise the amount of dephasing. Diffusion is not determined from the signal intensity alone,

but from the signal loss, when compared to a baseline (b = 0 s mm−2) signal.

A spin-echo pulse sequence can be sensitised to diffusion by using a pair of diffusion-weighted

gradients of duration, δ, separated by a 180◦ refocussing pulse as shown in Figure 2.6. The

first gradient pulse offsets the phase of the spins by an amount dependent on their location. The

second pulse provides the opposite rephasing in the case that the molecules have not moved.

However, water molecules will typically move because of thermal energy, which results in

dephasing. The greater the diffusion displacement during the time between the gradient pulses,
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Figure 2.6: Diffusion-weighted spin-echo pulse sequence timing diagram.

∆, the more attenuated the resulting signal. Diffusion acquisition estimates the log-ratio of the

signal intensity with no diffusion sensitisation, A0, and the signal after the full echo time, A(b).

This can be formulated (Basser et al., 1994),

ln
(

A(b)
A0

)
=−γ

2
δ

2
(

∆− δ

3

)
G2RT DR =−

3

∑
i=1

3

∑
j=1

bi jDi j, (2.2)

where γ is the gyromagnetic ratio, G is the maximal magnitude of the gradient pulse and R is a

vector describing the direction of the applied gradient. A symmetric matrix b with elements bi j

incorporates the properties of the diffusion gradients. The matrix D with elements Di j records

the effective diffusivity averaged over the time of diffusion acquisition.

Diffusion-weighted imaging (DWI) records a single value reflecting the rate of water diffu-

sion at each voxel. Typically, DWI acquisitions are recorded in the three principal gradient

directions in order to estimate the trace of average diffusion per voxel. Such acquisitions have

proved clinically useful in the imaging of ischaemia or hypoxic tissue, for example due to vas-

cular stroke (Moseley et al., 1990) and for the evaluation of tumours (Koh and Collins, 2007).

Early dMRI acquisitions were of lengthy durations and were susceptible to motion artefacts. It

was not until the introduction of EPI in the 1990s and later with the development of single-shot

EPI, that dMRI became more reliable and practical.

However, dMRI acquisitions have since been developed offering high-resolution probing of

microscopic tissue structures by encoding strong bipolar magnetic field gradient (b >= 1000

s mm−2) over many predefined directions, typically 12 to 60 or greater. The signal at each

voxel corresponds to the diffusion rate at the direction of interest. Increasing the number of

directions increases the angular resolution, thereby providing a more accurate sampling of

the underlying diffusion process (Jones, 2004). Similarly, repeating angular measurements, for
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example repeating 12 directions twice and taking an average, improves the signal-to-noise ratio

of the diffusion measurements for each direction. Necessarily, sampling over many directions

or repeating measurements requires lengthy acquisition times.

2.4.3 The diffusion tensor model

Figure 2.7: An elliptical tensor modelling water diffusion in three directions, with magnitudes

λ1, λ2 and λ3.

In the 1990s Michael Moseley and colleagues pioneered the idea of using an elliptical tensor

to model diffusion in anisotropic white matter (Moseley et al., 1990). The diffusion tensor

models local diffusion by a 3D Gaussian distribution with a covariance matrix proportional to

the diffusion tensor (Basser et al., 1994). The diffusion weighted signal, µi, is modelled as,

µi = S0 exp(−birT
i Dri), (2.3)

along a gradient direction ri with b-value bi for the ith diffusion encoding direction, where S0

is the signal with no diffusion weighting. The diffusion tensor D is,

D =


Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 . (2.4)

These parameters can then be estimated by a least-squares fit to the diffusion data. The tensor

model decomposes the diffusion measurements into a set of eigenvectors (ε1,ε2,ε3), the set

of principal directions of diffusion, and a corresponding set of eigenvalues (λ1,λ2,λ3), the

magnitude of these vectors. These parameters define the shape and orientation of the tensor.

The model assumes that at each voxel has only a single principal direction of diffusion. The
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tensor is most often represented as an ellipsoid (Figure 2.7), where the surface represents the

distance to which a molecule will diffuse with equal probability. MRI acquisitions for use with

the tensor model are commonly referred to as diffusion tensor imaging (DTI).

2.4.4 Diffusion parameters

The integrity of white matter can be measured by diffusion imaging parameters, such as the

mean diffusivity (MD) and fractional anisotropy (FA), derived from fitting the diffusion tensor

to the dMRI signal at each voxel (Le Bihan et al., 2001). These measures are often used in

diffusion imaging where they are considered to reflect fibre density and directional coherence.

Axial diffusivity, λ1, is the diffusivity along the principal axis. The diffusion along the two

remaining axis are often averaged to produce a measure of radial diffusivity,

λ⊥ = (λ2 +λ3)/2. (2.5)

MD or 〈D〉 is a scalar value that describes the mean relative degree of diffusion along all

directions at a voxel location,

〈D〉= (λ1 +λ2 +λ3)/3. (2.6)

These measures of diffusivity can be used to assess the restriction of water molecule diffusion

that may be due to the underlying density of cell membranes and fibres. FA is a rotationally and

translationally invariant scalar value that describes the degree of anisotropy at a voxel location

(Basser and Pierpaoli, 1996),

FA =

√
1
2

√
(λ1−λ2)2 +(λ2−λ3)2 +(λ3−λ1)2√

λ2
1 +λ2

2 +λ2
3

. (2.7)

An FA value of zero corresponds to isotropic diffusion, i.e. diffusion is equally restricted in

all directions, whereas a value of one means that diffusion occurs in only one direction and is

fully restricted in all other directions. FA can be close to 0 when measured in ventricular CSF,

whereas FA can approach 1 in regions of the corpus callosum where there are many myelinated

fibres with directional coherence. Typically, FA in grey matter falls below 0.3 and FA in white

matter rarely exceeds 0.7.

Studies have shown distinct architectural differences in white matter organisation across the

brain. For example, the corpus callosum is a well-defined white matter structure, which ex-

hibits considerable regional variance in FA along its length, with the thin fibres of the genu

having markedly lower FA than the fibres of the splenium or posterior pole, which typically

show the greatest diffusion anisotropy in the brain. The greatest FA values are found in the
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Parallel Fanning Crossing Kissing

Tensor

Figure 2.8: Illustration of four intravoxel multi-fibre configurations with the associated tensor

models.

white matter regions with the most coherent fibre bundles, such as the splenium (Pfefferbaum

et al., 2000). Markedly lower FA values are found in areas consisting of crossing fibres, such

as the centrum semiovale and pericallosal regions. Regional differences in FA are not nec-

essarily indicative of white matter abnormality or deterioration, but rather reflect the regional

differences in white matter structure. Crucially, axonal structures have been demonstrated to

be perturbed by ageing, disease and physical trauma (Tang et al., 1997; Arfanakis et al., 2002).

Disruptions of white matter structure measured by dMRI may reflect degradation of myelin,

parts of the axonal cytoskeleton or a decrease in axonal density. Furthermore, a seminal study

which involved learning of a complex visuomotor skill (juggling) demonstrated that training

can induce experienced-based changes in the white matter of the healthy brain (Scholz et al.,

2009).

2.4.5 The multi-fibre problem

Research has shown that there are several fibre reconstruction problems with the tensor model

(Wiegell et al., 2000; Tuch et al., 2002). The tensor model is rather simplistic in that only a

single ellipsoid is modelled, making the assumption that all the axons within a voxel follow the

same trajectory. This becomes problematic when estimating the trajectories of multiple fibres

within a dMRI voxel, a configuration that has been demonstrated to be common across the

brain’s inter-connections (Behrens et al., 2007). A number of confounding fibre configurations

have been identified, specifically where fibres cross, diverge or turn. Figure 2.8 illustrates

four multi-fibre configurations and the associated tensor models. The crossing of multiple

fibre trajectories has become known as the fibre-crossing problem. The fibre-fanning problem

describes the case where a bundle of coherent fibres diverges in two or more directions. The

fibre-kissing problem describes the case where multiple fibres change trajectory within a voxel

but do not cross. In practice, all of these fibre problems manifest at some scale throughout the

brain and these problems are inherently difficult to resolve at dMRI resolution.
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2.4.6 Other dMRI acquisitions

Partly in response to the multi-fibre limitations of the diffusion tensor, more sophisticated dMRI

acquisitions have since been developed. For example, high angular resolution diffusion imag-

ing (HARDI; Tuch et al. 2002) and diffusion spectrum imaging (DSI; Wedeen et al. 2005,

2008) have been designed to better model the distribution of diffusion orientations. HARDI

uses a high b-value diffusion gradient single-shell sampling scheme and a mathematical alter-

native to the tensor model to model fibre crossing as a function of diffusion gradient orientation.

HARDI has been demonstrated to model intra-voxel configurations which cannot be resolved

by the tensor model (Tuch et al., 2002). Likewise, DSI has the capacity to image crossing

fibres by measuring the 3D spectra of water diffusion (Wedeen et al., 2005). This is achieved

by using a large number of gradient encoding directions at various b-values. DSI has suffi-

cient angular resolution to map diffusion at each location with a non-Gaussian behaviour, by

using orientation diffusion functions (ODFs). This permits resolution of intra-voxel diffusion

heterogeneity caused by crossing axonal fibre tracts. DSI has been successfully applied to

connectome mapping (Hagmann, 2005) and offers increased sensitivity in estimating complex

fibre configurations compared to DTI (Bassett et al., 2010). However, DSI requires lengthy

acquisition times and high performance MRI hardware (Hagmann et al., 2010b).

2.5 Tractography

Tractography is the application of image processing algorithms to estimate white matter fibre

tracts from dMRI data. The aim is to piece together fibre trajectories based on the continuity

of diffusion orientation estimates from voxel to voxel. There are various established tech-

niques for constructing tracts and these can be broadly divided into those using deterministic

or probabilistic approaches. Figure 2.9 illustrates tractography outputs for deterministic and

probabilistic methods. Table 2.1 shows a non-exhaustive list of established tractography algo-

rithms.

Early tractography studies were applied to isolate well-studied fibre pathways, for instance the

splenium and genu of the corpus callosum. Eventually, as the methods and understanding of

white matter pathways has progressed this has enabled whole-brain tract generation.

2.5.1 Deterministic streamline tractography

Deterministic streamline methods were among the earliest established tractography techniques.

A streamline is constructed from a seed point and then from voxel-to-voxel following only the
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Deterministic methods Algorithm

Local path integration Fibre assignment by continuous tracking (FACT; Mori et al. 1999)

Conturo et al. (1999)

Diffusion directions Basser et al. (2000)

Tensor deflection White matter tractography using tensor deflection (TEND; Lazar et al. 2003)

Proprietary Diffusion toolkit (DTK; Wang et al. 2007; http://trackvis.org)

Probabilistic methods Algorithm

Bayesian BEDPOSTX/PROBTRACKX, FSL Diffusion Toolkit (FDT; Behrens et al. 2003b)

Friman et al. (2006)

Monte-Carlo streamline generation Probabilistic index of connectivity (PICo; Parker et al. 2003)

Hagmann et al. (2003)

Other methods Algorithm

Dijkstra’s algorithm Iturria-Medina et al. (2007)

Fast marching Parker et al. (2002)

Table 2.1: Established tractography algorithms.

(a) Deterministic (b) Probabilistic

Figure 2.9: Illustration of deterministic and probabilistic tractography: a) a set of streamlines

constructed from voxel-to-voxel by deterministic tractography (Credit: Psychiatry Neuroimaging

Laboratory, Harvard Medical School); b) Probabilistic tractography outputs showing connectivity

distributions, where the colour of each voxel indicates a connection probability (Credit: The

Human Connectome Project).

http://trackvis.org
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principal eigenvector of the diffusion tensor at each voxel until terminated by some stopping

criteria as shown in Figure 2.9(a). Typical stopping criteria include exceeding a streamline

angular threshold or falling below an anisotropy threshold. The first established algorithms

include fibre assignment by continuous tracking (FACT; Mori et al. 1999; Xue et al. 1999),

tracking the direction of fastest diffusion (Conturo et al., 1999) and path integral methods

(Basser et al., 2000). While FACT samples a trajectory direction exactly once per voxel, other

approaches interpolate the local diffusion data to determine the orientation at a sub-voxel scale

(Basser et al., 2000). These algorithms are entirely deterministic and only estimate the best fit

of the diffusion tensor.

However, such methods can be strongly affected by image noise and the results can be anatom-

ically ambiguous. These algorithms have been shown to fail in voxels with crossing fibres and

other complex fibre configurations and they are strongly affected by MR signal noise (Basser

and Pajevic, 2000). To minimise tracking artefacts due to these limitations, modified stream-

line algorithms were developed, such as use of anatomical priors to regularise tracking (Poupon

et al., 2000), and tensor deflection using adaptive stepping (Lazar et al., 2003). However, in

order to overcome the inherent limitations of deterministic methods, researchers have adopted

algorithms which better model the uncertainty in the estimates of diffusion orientation.

2.5.2 Probabilistic tractography

Probabilistic tractography (Parker et al., 2003; Behrens et al., 2003b, 2007; Friman et al., 2006)

is an extension of deterministic streamline tractography. Probabilistic approaches seek to re-

place the single principal diffusion direction with a distribution of orientations, which capture

the uncertainty associated with the diffusion signal at each voxel. During tracking, these al-

gorithms generate a set of streamlines using a Monte Carlo approach, by sampling from a

local probability density function (PDF), which describes the uncertainty in orientation at each

voxel location. Typically, streamline tracking is repeatedly initiated from a single seed point,

which results in many possible end points. Once a full set of streamlines is produced a con-

nection probability can be calculated describing the likelihood of connection between any two

locations. The probabilistic approach is more robust to noise, allows determination of uncer-

tainty in the reconstructed pathway, and has the potential to construct more reproducible tracts

(Behrens et al., 2003b). The probabilistic methods used in this thesis are described more fully

in Section 3.6.2.
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2.5.3 Other approaches

Various other algorithmic approaches have been applied to tractography, including energy min-

imisation techniques, such as Dijkstra’s algorithm (Iturria-Medina et al., 2007) and fast march-

ing (Parker et al., 2002). Others have applied quantitative tractography to quantify how the

shape of an individual tract compares to that of a predefined reference tract (Clayden et al.,

2007). Such methods employ unsupervised selection algorithms to reliably segment tracts.

One major limitation of current methods is the spatial scale of the information available. Re-

searchers have proposed super-resolution methods, termed track density imaging, which use

post-processing methods based on dMRI fibre tracking to estimate structures beyond the reso-

lution of the acquired imaging voxel (Calamante et al., 2010).

2.5.4 Region-of-interest tractography

The earliest tractography studies often involved region-of-interest (ROI) based tractography.

Following this approach, an ROI or set of ROIs are selected within white matter and tractog-

raphy is applied using the chosen seeding strategy and stopping criteria. Typically, an ROI is

formed from a contiguous group of voxels in an area of interest. Seed ROIs are used as the

starting location for tracking and waypoint ROIs may also be used which constrain streamlines

to pass through one or more waypoint regions (Conturo et al., 1999). Properties of white mat-

ter integrity can then be averaged within the resulting tracts and used to assess tract-specific

differences between subjects. Early ROI studies often assessed well-studied white matter path-

ways such as the genu and splenium of the corpus callosum. Manual placement of ROIs has

the advantage that it is simple and tractable to perform and the results are often straightforward

to interpret. However, by definition, the ROI approach is subjective and limited to a priori

selected areas and therefore some pertinent white matter tracts may be excluded from analysis

by the choice of ROIs.

In comparison, whole-brain tractography approaches using automatic cortical parcellation have

the advantage that an objective segmentation can be obtained with little manual effort. How-

ever, whole-brain approaches face a challenge to maintain the consistency of segmentations

from subject to subject and the segmentations are difficult to validate. In addition, the resulting

analysis becomes more complex as the number of regions increases.

2.5.5 Validation

Although tractography is a powerful non-invasive technique it remains largely un-validated

against ground-truth studies, primarily because of the huge challenge in observing the true ax-
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onal connections, particularly for the human brain. Attempts to validate tractography have been

made against post-mortem tracing methods in the Porcine (Dyrby et al., 2007) and Macaque

(Hagmann et al., 2008) brains, with good agreement seen in well-studied major white mat-

ter tracts. Likewise, synthetic diffusion models have been used to validate various aspects of

tractography (Alexander, 2008; Fillard et al., 2011). Hagmann at al. compared connectivity

obtained through DSI and deterministic tractography in a Macaque brain against known tracts

from the CoCoMac macro-connectivity database3. Hagmann’s results show 78.9% agreement

with known connections but with 6.1% of connections reported as false negatives and 15.0% of

connections placed in regions where the presence of pathways was unknown (Hagmann et al.,

2008). However, researchers admit that much about the white matter organisation of the human

brain remains unknown (Hagmann et al., 2010b).

2.5.6 Subjectivity of tractography

Tractography is subjective in the sense that the researcher is faced with a choice of tractog-

raphy algorithms, models of multiple fibres, stopping criteria and seed placement. Although

these choices can be motivated by the on-going biological validation of the methods, the result-

ing configuration is often rather arbitrary and these choices inevitably vary from study to study.

Although tractography algorithms have been developed to model the underlying white mat-

ter structure, the problem remains of how to best perform tract reconstruction in a consistent

and reproducible way. This is especially important for case-control and cross-sectional anal-

ysis where subjectivity is a confounding factor. For instance, tract reconstruction is strongly

affected by the choice of starting location and one seeding strategy can product markedly dif-

ferent streamlines from another strategy (Cheng et al., 2012b; Côté et al., 2013). One advantage

of whole-brain tractography over ROI-based tractography is that seeding can be performed ob-

jectively and systematically throughout the brain, removing the need for manual placement of

seed points. However, this indiscriminate inclusion of seed points means that a large number of

seeds may be included which may not be entirely appropriate and the analysis must deal with

a greater proportion of spurious streamlines and noise. We revisit seeding strategies for con-

nectome mapping in Section 2.7.2.1 and compare two alternative seeding strategies in Chapter

4.

3http://cocomac.g-node.org

http://cocomac.g-node.org
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2.6 The connectome

The term connectome (Hagmann, 2005; Sporns et al., 2005) was supposedly coined indepen-

dently and simultaneously by Hagmann and Sporns in analogy to the well known genome,

the complete mapping of an individual genetic profile that characterises biological function at

multiple levels. A connectome is a network which maps the connections of the brain, where

some choice of neural units form the nodes of a network and some choice of neural connections

between these units form the links of the network. A connectome may involve structural con-

nections and/or functional connections. Refer to Sporns (2011a) for a comprehensive overview

of connectome methods and their interpretations. To date, the approach to connectome map-

ping has chiefly been tackled from two vastly differing scales: a) a cellular scale mapping (bot-

tom up) through techniques such as post-mortem histological tracing and confocal microscopy;

and b) a macroscopic scale in vivo imaging of the entire cerebrum (top down) through tech-

niques such as dMRI and functional MRI (fMRI). Note that the disparity between these scales

is immense, with a typical 1 mm isotropic voxel in cortical grey matter considered to contain

approximately 40 thousand neurons. These ongoing developments can be considered some-

thing of a response to Crick and Jones reflection on brain connectivity in 1993 which urged

the development of radically new techniques to investigate and understand the brain (Crick and

Jones, 1993).

Note that a vast amount of pre-connectome research has been concerned with mapping and

understanding brain connectivity at various levels, including whole-brain. The distinction be-

tween connectome research and earlier studies of connectivity is, of course, rather arbitrary.

2.6.1 The mesoscopic scale

The ultimate aim of the connectome approach is, perhaps, a cellular scale (mesoscopic) map

of the human brain, potentially outlining each and every axon and synapse (noting that neu-

ronal connectivity changes with experience and varies from individual to individual). However,

technologies to achieve this resolution in mammals are some way off and for now only gross

approximations at a macroscopic scale in vivo are possible with MRI.

A mesoscopic scale network, in which individual neurons are treated as nodes, are currently

only possible for the simplest organisms. Meaningful localisation of circuits in the mammalian

brain is challenging because identifying all relevant connections at such a scale is currently

intractable. However, on the basis that all organisms share common genetics, neuroscientists

have studied simpler model organisms with far fewer neurons. Model organisms involved in

connectomics research include the mouse, the fruit fly, and the nematode roundworm.
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Figure 2.10: 3D model of the nervous system of the nematode round worm, Caenorhabditis

elegans. (Credit: The OpenWorm project; Busbice et al. 2013)

For example, the roundworm (Caenorhabditis elegans) has a nervous system composed of 302

neurons and roughly 7,500 synapses. This connectome was painstakingly traced from elec-

tron micrographs of a single animal by neurobiologists in the 1980s (White et al., 1986). This

roundworm is the only organism for which a complete connectome exists. This map (Figure

2.10) has led to a fuller understanding of the functional organisation of this simple nervous

system. However, detractors of this approach have also pointed to the lack of neuroscientific

benefit arising from this map because of the crucial lack of understanding in how individual

neurons behave physiologically4. Another criticism of the mesoscopic approach is that neu-

ronal connectivity, in mammals at least, is dependent on experience and it is not clear how

mesoscopic connectivity in one individual may relate to connectivity in another individual.

2.6.2 The macroscopic scale

Topological information of the large-scale structural networks in the brain may be obtained

by applying tractography algorithms to dMRI data. Since individual analysis of many tracts

is impractical at this scale our focus is on the large-scale networks of the cerebral cortex at a

systems level, involving the collective wiring of many billions of neurons.

The first mapping approaches combined whole-brain tractography with computational network

analysis to quantify the integrity of the entire brain in healthy volunteers (Hagmann et al., 2007;

Vaessen et al., 2010; Zalesky and Fornito, 2009). Additionally, advances in computational

power and network analysis methods have assisted the characterisation of such large-scale

brain networks. Analysis of these networks may determine the normal variation in brain net-

4a component also missing from current connectome approaches.



2.6. The connectome 23

work topology. However, this approach may also prove useful for studying the topological and

structural changes that accompany ageing or neurological disease progression in general.

2.6.3 Summary of dMRI connectome studies

The first connectome dMRI studies demonstrated whole-brain network analysis in a small num-

ber of healthy volunteers (Hagmann et al., 2007, 2008). These early studies and those that

followed demonstrated that whole-brain networks could indeed be constructed from dMRI and

the resulting networks showed a remarkable degree of similarity from person to person, but

were not identical. These studies have shown that the human brain and the brains of other

mammals, have various non-trivial properties in their organisation. For instance, the brain is

characterised by highly connected ‘hub’ nodes, a modular structure and ‘small-world’ organi-

sation (Hagmann et al., 2008; Honey et al., 2008; Sporns, 2011b; Van Den Heuvel and Sporns,

2011; Yan et al., 2011). These findings are discussed more fully in Section 2.11.

Since the first pioneering publications, many structural network studies have been applied in

large cohorts. This includes normal ageing (Gong et al., 2009b; Robinson et al., 2010; Ystad

et al., 2011; Wen et al., 2011), gender differences (Gong et al., 2009a), intelligence (Li et al.,

2009), Alzheimer’s disease (AD) (Lo et al., 2010; Jahanshad et al., 2015), mild cognitive im-

pairment (MCI) (Wee et al., 2011), stroke (Crofts et al., 2010), multiple sclerosis (MS) (Shu

et al., 2011), amyotrophic lateral sclerosis (ALS) (Verstraete et al., 2011) and neuropsychi-

atric disorders (Skudlarski et al., 2010; Zalesky et al., 2011). Broadly, studies can be placed

into three categories: a) those demonstrating new methods in network construction or compar-

ing alternative approaches; b) those used to determine network organisation in individuals or

populations (cross-sectional); and c) case-control studies, used to identify network differences

between two (or more) groups. Table 2.2 provides a list of influential methods based papers

and studies which assess aspects of reliability in structural brain networks. Table 2.3 provides a

non-exhaustive list of well-cited structural cross-sectional and case-control studies in humans.

In each case a summary of the dMRI acquisition, segmentation method and tractography con-

figuration is reported.

However, to date only a small subset of studies have assessed the reliability of the resulting

networks (Bassett et al., 2010; Cammoun et al., 2011; Cheng et al., 2012a; Hagmann et al.,

2008; Vaessen et al., 2010; Zalesky et al., 2010b), and currently there is a lack of assessment

concerning the reproducibility of these approaches.

Notably, the Human Connectome Project5 (Marcus et al., 2011; Van Essen et al., 2013), is

a major ongoing project sponsored by the National Institutes of Health, which aims to build

5http://www.humanconnectome.org

http://www.humanconnectome.org
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a structural and functional map of the healthy human brain at a macroscopic scale, using a

multitude of imaging technologies and resolutions. Similarly, the Open Connectome Project6

(Vogelstein et al., 2010, 2011) has similar goals using human and animal studies but with a

largely bottom-up driven approach (from the level of neurons and synapses) and provides open

access to its data.

6http://openconnecto.me

http://openconnecto.me
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Study Cohort (N) DW-MRI Field Strength (T) Directions Parcellation Nodes Tractography
Bassett et al. 2010 Test-retest (7) DTI, DSI 3 30, 258 AAL, HO, LPBA40 90, 110, 54 DTK

Cammoun et al. 2011 Test-retest (5), Healthy (20) DSI 3 - FreeSurfer 66, 133, 241, 483, 998 Hagmann et al. 2007

Cheng et al. 2012a Test-retest (44), Healthy (15) DTI 3 48 FreeSurfer 68 DTK

Gigandet et al. 2008 Healthy (4) DSI 3 129 FreeSurfer, as described 66, 998 Hagmann et al. 2007

Hagmann et al. 2007 Healthy (2) DSI 3 - as described 500-4000 As described (deterministic)

Hagmann et al. 2008 Test-retest (1), Healthy (5) DSI 3 - as described 998 As described (deterministic)

Hagmann et al. 2010b Juvenile (30) DTI, Q-ball 3 12, 60 Hagmann et al. 2008 66, 241 Hagmann et al. 2008

Honey et al. 2008 Healthy (5) DSI 3 129 FreeSurfer 66, 998 Hagmann et al. 2008

Honey et al. 2009 Healthy (5) DSI 3 129 FreeSurfer, as described 66, 998 Hagmann et al. 2007, 2008

Iturria-Medina et al. 2007 Healthy (5) DTI 1.5 12 IBASPM 71 as described (probabilistic)

Iturria-Medina et al. 2008 Healthy (20) - 1.5 12 AAL 90 as described (probabilistic)

Vaessen et al. 2010 Test-retest (6) DTI 3 6, 15, 32 WFU 111 PICo

Yo et al. 2009 Healthy (1) HARDI 3 60 Manual segmentation 14 Various

Zalesky and Fornito 2009 Healthy (1) DTI 1.5 3 0 AAL 70 As described

Zalesky et al. 2010b Healthy (3) DTI, HARDI 3 60, 252 AAL and as described 82, 500, 100, 200, 300, 4000 FACT

Table 2.2: A list of human connectome studies using dMRI and tractography primarily reporting on methodology and reliability. Abbreviations used for atlases:

Automatic Anatomical Labelling (AAL), Harvard-Oxford (HO), Individual Brain Atlases for Statistical Parametric Mapping (IBASPM), LONI Probabilistic Brain

Atlas of 40 subjects (LPBA40), Wake Forest University (WFU).
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Study Cohort (N) DW-MRI Field Strength (T) Directions Parcellation Nodes Tractography
Bonilha et al. 2014 Ageing (17) DTI 3 30 AAL 90 DTK

Chung et al. 2011 Autism (17) : HC (14) DTI - 12 as described 1-800 TEND

Crofts et al. 2010 Stroke (9) : HC (18) DTI 1.5 60 HO 56 FDT

Fischi-Gómez et al. 2014 Infant (52) DTI 3 30 FreeSurfer 83 Hagmann et al. 2007

Fischer et al. 2014 Ageing (43) DTI 3 30 HO 111 FACT

Gong et al. 2009b Healthy (95) DTI 1.5 30 AAL 78 FDT

Gong et al. 2009a Healthy (80) DTI 1.5 6 AAL 78 Mori et al. 1999

Greicius et al. 2009 Healthy (23) DTI 1.5 12 Manual 4 Basser et al. 2000

Ingalhalikar et al. 2014 Gender (428:521) DTI 3 64 FreeSurfer 95 FDT

Jahanshad et al. 2011 Healthy (234) HARDI 4 94 FreeSurfer 70 Aganj et al. 2011

Korgaonkar et al. 2014 Depression (95) : HC (102) DTI 3 42 FreeSurfer 84 FDT

Kuceyeski et al. 2011 Brain trauma (15) : HC (14) HARDI 3 55 IBASPM, AAL 116 As described

Li et al. 2009 Healthy (79) DTI 3 12 AAL 90 FDT

Li et al. 2011 Healthy (94) DTI 3 60 FreeSurfer 82 FDT

Lo et al. 2010 AD (25) : HC (30) DTI 1.5 13 AAL 78 FACT

Park et al. 2008 Healthy (1) DTI 3 45 AAL 73 FDT

Robinson et al. 2008 Healthy (174) DTI 3 15 Heckemann et al. 2006 83 FDT, Iturria-Medina et al. 2007

Robinson et al. 2010 Healthy (42), Elderly (54) DTI 3 15 Heckemann et al. 2006 83 FDT

Shu et al. 2009 Blind (17) : HC (17) DTI 3 12 AAL 90 FACT

Shu et al. 2011 MS (39) : HC (39) DTI 1.5 6 AAL 90 FACT

Skudlarski et al. 2008 Healthy (41) DTI 3 12 WFU 26, 5000 FACT

Skudlarski et al. 2010 Schizophrenia (27) : HC (27) DTI 3 12 WFU 28 FACT

Van Den Heuvel and Sporns 2011 Healthy (21) DTI 3 30 FreeSurfer 82 FACT

Várkuti et al. 2011 Healthy (23) DTI 3 12, 64 AAL 116 PICo

Verstraete et al. 2011 ALS (35) : HC (19) DTI 3 30 (×2) FreeSurfer 82 FACT

Wee et al. 2011 MCI (10) : HC (17) DTI 3 25 AAL 90 ExploreDTI (Leemans et al., 2009)

Wen et al. 2011 Elderly (342) DTI 3 32 FreeSurfer 68 MedInria (http://med.inria.fr)

Yan et al. 2011 Healthy (73) DTI 3 64 AAL 78 FACT

Ystad et al. 2011 Healthy (100) DTI 1.5 25 FreeSurfer DTK

Zalesky et al. 2011 Schizophrenia (74) : HC (32) DTI 1.5 64 AAL 82 FACT

Table 2.3: A non-exhaustive list of cross-sectional and case-control human connectome studies using dMRI and tractography. HC indicates Healthy Controls.

http://med.inria.fr
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2.6.4 Comparison to other techniques in dMRI

Tract-based spatial statistics (TBSS) is an established voxel-based analysis of white matter

tracts using dMRI, which has been described in detail elsewhere (Smith et al., 2006) and ap-

plied extensively in analysis of major white matter pathways. Firstly, a nonlinear deformation

is used to align the FA map of each subject to a white matter template in standard space. White

matter masks are ‘skeletonised’ (morphologically thinned) in order to obtain the centre-line of

the principal white matter pathways, while minimising the impact of registration error and par-

tial volume effects. Hypothesis testing may then be used with case-control or cross-sectional

analysis to assess relationships between variables of interest and the voxel-wise FA or MD

within white matter. Finally, permutation testing assigns a corrected p-value to each voxel, for

which significance can be determined.

To our knowledge, the correspondence between TBSS and structural networks has not been

well explored. In Section 5.5.3, we demonstrate a quantitative method to compute a network-

tract overlap between the two methods, in terms of the white matter regions involved (Buchanan

et al., 2014b).

2.7 Methods of network construction

Although there is currently no standard method for constructing dMRI structural networks,

previous approaches have typically followed a similar organisation. Firstly, network nodes are

formed from segmentation of high resolution 3D T1-weighted volume scans, often by registra-

tion to neuroanatomical atlases (Maldjian et al., 2003; Shattuck et al., 2008; Tzourio-Mazoyer

et al., 2002) or surface parcellation based on cortical sulci and gyri (Desikan et al., 2006; Fischl

et al., 2004b). The number and choice of nodes requires careful consideration as this affects

the resulting measures of connectivity (Zalesky et al., 2010b). Previous approaches have typi-

cally divided the cortex into fewer than 100 grey matter nodes, though some researchers have

used finer parcellations with thousands of nodes of roughly uniform size, primarily to estimate

global network properties (Cammoun et al., 2011; Hagmann et al., 2007, 2008; Zalesky et al.,

2010b). Secondly, cross-modal registration (Andersson et al., 2007; Greve and Fischl, 2009;

Jenkinson and Smith, 2001; Jenkinson et al., 2002) is typically required to align cortical labels

to diffusion space. Thirdly, either deterministic (Basser et al., 2000; Lazar et al., 2003; Mori

et al., 1999) or probabilistic (Behrens et al., 2003b, 2007; Parker et al., 2003) tractography is

used to construct white matter tracts from dMRI data. Lastly, network connections are com-

puted by quantifying tracts connecting between regions. Network weights typically reflect a

count of interconnecting tracts (Hagmann et al., 2008) or some measure of tissue microstruc-
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ture, such as diffusion anisotropy, averaged along the length of each tract (Iturria-Medina et al.,

2007; Robinson et al., 2010). Connections may then be assessed directly in case-control studies

(Zalesky et al., 2010a) or network measures derived from graph-theory (Rubinov and Sporns,

2010) may be used to characterise patterns of connectivity in individuals or across populations.

Established network measures include node degree, clustering coefficient and characteristic

path length (Watts and Strogatz, 1998), efficiency (Latora and Marchiori, 2001), and ‘small-

world’ properties (Humphries and Gurney, 2008). Although the subsequent networks may be

weighted or binary, they are typically undirected as tractography cannot distinguish between

afferent and efferent connections.

2.7.1 MRI acquisition

For the purpose of building structural networks, typically researchers acquire both a high-

resolution T1-weighted structural volume and dMRI data in the same session. However, some

researchers have generated networks from only dMRI volumes (Hagmann et al., 2007). To

date, the majority of studies have used conventional dMRI acquisition at angular resolutions

ranging from 6 to 64 directions. However, in attempts to resolve the crossing fibre limita-

tions of tensor imaging, a number of recent studies have employed more complex acquisitions,

such as DSI (Bassett et al., 2010; Gigandet et al., 2008; Hagmann et al., 2007, 2008; Honey

et al., 2008, 2009) and HARDI (Jahanshad et al., 2011; Kuceyeski et al., 2011; Yo et al., 2009;

Zalesky et al., 2010a). Acquisitions using EPI typically require some form of eddy-current

correction to correct for the known systematic distortions (Jones et al., 2013). Basset et al.

compared network properties obtained from both DTI and DSI in six healthy volunteers with

results suggesting good agreement between the two acquisitions (Bassett et al., 2010). Zalesky

et al. compared DTI and HARDI acquisitions in three volunteers (Zalesky et al., 2010b) at

various network scales. They determined that HARDI tractography produced stronger inter-

hemispheric connectivity than DTI and yielded more streamlines than DTI, but that some of

these streamlines were spurious. Although network properties derived from HARDI and DTI

were broadly similar there were significant differences at all the scales investigated. Vaessen et

al. compared DTI acquisitions at three different angular resolutions (6, 15 and 32 directions)

in six healthy volunteers. They concluded that angular resolution affects the resulting network

properties, with the strength of connectivity found to increase with angular resolution. Typi-

cally, acquisitions have been made at 3 T field strength, whereas roughly one third of studies

we reviewed used 1.5 T acquisition (Table 2.3). Whilst it is commonly accepted that acqui-

sitions at 3 T or greater can improve the signal-to-noise, to our knowledge, the effect of field

strength on the resulting networks has not been assessed in a connectome setting. Ultimately,

there are many issues and caveats with dMRI acquisitions and preprocessing steps which must
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Template-matching atlas Atlas

AAL Automatic anatomical labelling (SPM toolbox) (Tzourio-Mazoyer et al., 2002)

HO Harvard-Oxford atlas (FSL)

IBASPM Individual Brain Atlases Statistical Parametric Mapping (SPM toolbox)

(Alemán-Gómez et al., 2005)

LPBA40 LONI Probabilistic Brain Atlas of 40 subjects (Shattuck et al., 2008)

WFU Wake Forest University atlas (SPM toolbox) (Maldjian et al., 2003)

Cortical labelling Atlas

FreeSurfer Desikan-Killiany (Desikan et al., 2006)

Destrieux atlas (Destrieux et al., 2010)

Subcortical segmentation (Fischl et al., 2002, 2004a)

Table 2.4: Established neuroanatomical segmentation approaches.

be considered carefully to obtain an appropriate signal (Jones and Cercignani, 2010).

2.7.1.1 Neuroanatomical segmentation approaches

There is no universally accepted parcellation scheme for obtaining a set of cerebral regions to

use as network nodes. Typically, ROIs are formed of a contiguous group of grey matter voxels,

although potentially a single seed voxel may constitute a node. Table 2.4 shows a list of es-

tablished segmentation algorithms/atlases used in dMRI network studies. Several segmentation

approaches are based on template registration to fixed anatomical atlases (Maldjian et al., 2003;

Shattuck et al., 2008; Tzourio-Mazoyer et al., 2002). The FreeSurfer image analysis suite has

become very widely used in network studies and therefore plays an increasingly central role

in connectome mapping. The FreeSurfer suite performs grey/white matter tissue estimation,

parcellation of the cerebral cortex into units with respect to gyral and sulcal structure (Fischl

et al., 2004b; Desikan et al., 2006) and a separate segmentation is used for sub-cortical grey

matter structures (Fischl et al., 2002, 2004a). Typically, segmentation methods divide the cere-

brum into 50–100 regions, roughly in agreement with Brodmann areas. However, finer grained

parcellations have also been developed (Romero-Garcia et al., 2012). Figure 2.11 shows an

illustration of two alternative cortical segmentations: the Individual Brain Atlases for Statis-

tical Parametric Mapping (IBASPM; Alemán-Gómez et al. 2005) and the Desikan-Killiany

atlas used by FreeSurfer (Desikan et al., 2006). We assess the test-retest performance of two

FreeSurfer cortical atlases in Chapter 4.

Segmentation approaches produce different cerebral subdivisions and the volume of ROIs is not

usually uniform. For example, structures such as the insula may have a voxel volume several

times larger than that of sub-cortical structures such as the amygdala. Accordingly, appropriate

normalisation of weighting may be needed (see Section 3.7.3).
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(a) (b)

Figure 2.11: Illustration of two alternative cortical segmentations: a) the IBASPM atlas; b) The

FreeSurfer Desikan-Killiany atlas with 34 cortical structures per hemisphere.

However, if cortical correspondence is not a concern, then an alternative approach is to con-

struct networks by dividing the cortex into a number of smaller and arbitrary regions (Bassett

et al., 2010; Gigandet et al., 2008; Hagmann et al., 2007, 2008; Honey et al., 2008, 2009). These

studies have divided cortical grey matter into roughly 500–4000 nodes of roughly uniform size,

with the caveat that identifying spatial correspondence of nodes across subjects is challenging.

Local network measures, such as individual node properties cannot meaningfully be compared

between subjects. However, this approach has the potential to create a high resolution network,

which is useful for estimating global organisational properties.

2.7.2 Tractography algorithms

There is no one established method of performing tractography in connectome studies. To

date, researchers have employed a variety of alternative tractography approaches to compute

connectivity between brain regions. In general, the deterministic approach estimates the best

fit of the diffusion tensor model at each voxel, whereas the probabilistic approach estimates

a distribution of possible orientations. There has, however, been a preference for using de-

terministic methods over probabilistic methods. Deterministic methods have, at the least, the

advantage that they are less computationally demanding.

However, the test-retest reliability of these techniques, and how accurately tracts reflect the un-

derlying axonal ground-truths is largely unstudied in terms of false positive and false negative

connections. One comparative study compared seven tractography approaches in a connectome

context (Yo et al., 2009). Their results suggests that fibre-crossing models identify more con-

nections than a simple tensor model and that probabilistic approaches reveal greater number

of connected regions but with lower connectivity values than deterministic methods. However,

their study was cross-sectional and does not report test-retest agreement. However, Côté et al.
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(2013) found that deterministic tractography produces less invalid tracts which leads to better

connectivity results than probabilistic tractography. We compare the performance of determin-

istic and probabilistic approaches in Chapter 4.

2.7.2.1 Seeding approaches

There are two commonly used tractography seeding approaches, namely white matter (WM)

and grey matter (GM) seeding. Under WM-seeding, tracking is initiated from white matter

voxels and streamlines are constructed in two collinear directions until terminated by stopping

criteria. Under the GM-seeding approach, tracking is instead initiated from grey matter voxels

(within an ROI) and streamlines are constructed in a single direction until terminated by stop-

ping criteria. Note that whole-brain seeding can be used to initiate seeding from both grey and

white matter. Notably, a sub-class of grey matter seeding had also been employed where seed-

ing is initiated from the white-grey matter interface (Vaessen et al., 2010; Robinson et al., 2010)

where myelinated axons are expected to originate/terminate. However, robustly identifying this

interface can be challenging. Though WM-seeding is the convention and the most commonly

used approach, it is known to introduce a length bias in streamline generation (Hagmann et al.,

2007). For instance, given an underlying white matter tract, WM-seeding will produce propor-

tionally more streamlines within a long tract (given that more seed voxels will be placed along

its length) than a shorter tract. Researchers have proposed streamline length normalisation to

compensate for the accumulated tractography errors which increase with streamline length and

to correct for a bias in repeatedly identifying long tracts when seeding from white matter (Hag-

mann et al., 2008). In contrast, GM-seeding, by only seeding from grey matter voxels is less

affected by this length bias, but is affected by a seeding bias due the size of grey matter ROIs

(if the number of seed points matches the number of voxels within a region). This too can be

corrected by normalising for the number of seed points per region (Hagmann et al., 2008).

Additionally, seed points can be placed either systematically, for example at the centre of ev-

ery voxel within a seed region, or randomly. Dense seeding methods seek to place multiple

seed points within a voxel, which involves sub-voxel placement by interpolation of diffusion

measures (Tournier et al., 2007, 2008). There are suggestions that random seed placement may

be appropriate for estimating probabilistic connections. Cheng et al. (2012b) showed that seed

density has an impact on the resulting structural networks from the local to global level. As the

number of seeds were increased, the variance in network properties decreased. However, the

authors observed that the network variance is also influenced by other imaging factors, because

spurious fibres continue to affect nodal degrees and edge weights. The authors suggest that

thresholding of the network weights is necessary to create an appropriate weighted network.

Similarly, Côté et al. (2013) reported that multi-seeding has a large impact on tractography
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outputs and that the seeding method should be used with care. In Chapter 4 we present a test-

retest analysis of WM- and GM-seeding in terms of network reliability and we also assess the

performance of the streamline length correction.

2.7.3 Registration

Both linear and nonlinear deformable transformations have been used to align grey matter re-

gions from T1 weighted space to diffusion space, or vice versa. Linear transforms can account

for translation, rotation, scaling and shear, whereas nonlinear techniques (surface splines,

multi-quadrics etc.) can account for local deformation or warping but are typically constrained

to some degree. Usually a mutual information cost function must be used to align intensity

gradients between modalities. Different registration algorithms may be suited to different reg-

istration targets, but perfect alignment is often not obtainable. Same-subject registration is a

challenging open problem in neuroimaging, but also a well researched one. Klein et al. (2009)

conducted an evaluation of fourteen nonlinear deformation algorithms applied to brain image

registration using 8 different error measures for 80 manually labelled brains. One of the most

significant findings of this study is that the relative performances of the registration methods

under comparison appear to be little affected by the choice of subject population, labelling

protocol, and type of overlap measure.

While registration is not the focus of this study, in Chapter 4 we assessed the test-retest regis-

tration agreement between two well-established registration methods, one linear and the other

nonlinear. We quantified registration agreement in grey matter, white matter and cortical re-

gions.

2.7.4 Definitions of connectivity

Network connectivity is typically recorded using the graph-theory notation of an adjacency (or

connectivity) matrix, a, of size n×n, where n is the number of nodes and the entry at position

ai j records a measure of association between node i and node j. Inter-regional associations are

typically constructed from thousands of streamlines, although many millions can be estimated

with probabilistic tractography. Several measures of association between nodes have been used.

Most researchers choose to represent the associations in the adjacency matrix by the count of

interconnecting streamlines (streamline density) between node i and node j. (Hagmann et al.,

2007, 2008; Vaessen et al., 2010; Skudlarski et al., 2008; Zalesky et al., 2010a). However,

others record the average tract length from the set of tracts connecting a pair of nodes (Hagmann

et al., 2007). Typically, network weightings recording streamline density also undergo length

and/or ROI size normalisation (refer to Section 3.7.3). Other associations between nodes are
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possible, for example, measures of tissue microstructure, such as diffusion anisotropy, averaged

along the length of each tract (Iturria-Medina et al., 2007; Robinson et al., 2010) or estimates

of fibre bundle cross-sectional area (Zalesky and Fornito, 2009). Necessarily, these network

weightings record different facets of connectivity. It remains unclear which weighting can be

calculated most robustly and which best represents the underlying axonal connections.

In most cases, the result of network construction is an undirected positive-weighted graph. For

structural networks, connectivity matrices are treated as symmetric because streamline tracking

cannot distinguish between afferent and efferent connections. Although self-connections reflect

the set of streamlines which start and terminate at the same node, this information is typically

discarded from the adjacency matrix before performing network analysis. In Chapter 4 we

present a test-retest analysis of three types of network weighting, two based on streamline

density and a third based on diffusion anisotropy.

2.7.4.1 Thresholding

Network metrics have often been computed on thresholded and binarised networks, i.e. only

connections above a certain strength are considered. Binary approaches discard any weight

associated with a connection. The reasons for binarisation are two-fold: 1) thresholding and

binarisation may remove noise in the connectivity values obtained; 2) A binary graph repre-

sentation has the advantage that network metrics are more straightforward to compute. How-

ever, now that many network metrics also have weighted (and directed) variants (Rubinov and

Sporns, 2010), weighted graphs can be assessed without the need for binarisation. One problem

in applying thresholding is that after applying the same threshold to a varied set of adjacency

matrices, this will likely result in matrices with different levels of sparsity. While techniques

can be applied to match the sparsity across a set of matrices, this alters the weightings differ-

ently for each subject (Zalesky et al., 2010a). Approaches which act directly on the connection

weighting without thresholding can be used without any bias arising from the setting of arbi-

trary thresholds, but may be adversely affected by spurious connections.

2.8 Network theory

Network metrics derived from graph theory may then be used to assess brain connectivity be-

tween individuals or across populations. Graph theory is the mathematical study of graphs or

networks, which are used to define pairwise relationships between objects. Graph theory orig-

inated in geometry and was first popularly used in Euler’s Köningsberg bridge problem in the

eighteenth century, a puzzle involving crossing each of seven bridges exactly once in the Prus-
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Measure Description

Node degree Number of links connected to a node

Node strength Variant of node degree incorporating connection weights

Network sparsity Ratio of observed connections to all possible connections (inversely proportional to net-

work degree)

Path length Shortest path length (distance) in terms of connections, between a pair of nodes

Characteristic path length Global measure of integration reflecting the average shortest path length between all pairs

of nodes

Global efficiency Global measure of integration inversely related to characteristic path length

Clustering coefficient measure of how many local clusters exist around a node in terms of its direct neighbours

Transitivity Normalised variant of clustering coefficient removing the bias due to nodes with low

degree

Betweenness centrality Fraction of shortest paths in the network that pass through a given node

Within module degree z-score Nodal measure of intra-module connectivity

Participation coefficient Nodal measure of inter-module connectivity

Small-world measure Global measure comparing clustering and path length of a given network to an equivalent

random network with the same degree distribution

Table 2.5: Summary of network properties
.

sian city of Köningsberg. Network analysis has since been widely applied across many areas

of science and for many kinds of both physical and abstract networks. Rubinov and Sporns

(2010) have collated a comprehensive overview of network properties and their interpretations

in terms of brain connectivity. Established metrics include node degree, clustering coefficient,

characteristic path length and efficiency. Table 2.5 provides a summary of some commonly

used network properties. It is important to note that values of many network measures are

greatly influenced by basic network characteristics, such as the number of nodes and links, and

the degree distribution (Barabasi and Albert, 1999). A small-world network is a network which

is considerably more clustered than a random network and is simultaneously highly segregated

and integrated (Watts and Strogatz, 1998). Mathematical definitions of the network measures

used in this work are presented in Section 3.8 along with illustrated examples.

2.9 Network visualisation

A challenge facing connectome researchers is the search for a compact and coherent way to vi-

sualise thousands of network connections without losing essential information. Brain networks

can been visualised as a connectivity matrix as shown in Figure 2.12(a), a graph with the

anatomical location of nodes as shown in Figure 2.12(b), or an abstract graph such as a circle

network as shown in Figure 2.12(c). Each representation has relative merits and disadvantages.

Adjacency matrices are compact and convey the comparative strength of connectivity well, but

are difficult to relate to anatomy. Anatomical networks visualise the anatomy well and can be

overlaid against image volumes, but they can be difficult to interpret with networks of thou-
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(a) (b) (c)

Figure 2.12: Three alternative network visualisations: a) An adjacency matrix showing the

associations between nodes (Hagmann et al., 2008); b) An anatomical graph generated by

the Connectome Viewer (Gerhard et al., 2011); c) A circular graph incorporating cortical node

properties (Irimia et al., 2012).

sands of connections. Abstract networks have the advantage that nodes can be organised by

nodal properties, such that highly interlinked nodes can be viewed adjacently, thus highlight-

ing patterns of connectivity. In most cases, network interpretation requires some simplification

in the amount and dimensionality of the network connections in order to display the essential

components of brain organisation. It is often not helpful to plot each and every connection.

Neuroinformatics researchers have begun to develop connectome specific file formats and vi-

sualisation tools in an effort to create standard methods of storing, exchanging and viewing

connectome data. For instance, Gerhard et al. created a “connectome file format”, which spec-

ifies the required data to define a network (Gerhard et al., 2011). The Connectome Mapping

Toolkit7 is an accompanying software suite which makes use of the connectome file format to

visualise networks and adjacency matrices. Additionally, Irimia et al. (2012) developed a circu-

lar network representation, termed a connectogram, similar to those used to visualise genomic

relationships and with claims of a high “data-to-ink ratio”. This representation can show net-

work connections alongside cortical node properties, such as volume, area, cortical thickness

and curvature, as seen in Figure 2.12(c).

2.10 Network analysis

Analysis of networks can be undertaken at three levels, namely global, nodal and edge-wise.

For instance, although metrics can be averaged globally, many metrics can be indexed by node,

such as the node degree, or by edge, such as the shortest path length. As a result, a large

7http://cmtk.org/viewer/

http://cmtk.org/viewer/
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number of variables may be generated per network. The earliest connectome studies reported

global network properties which describe overall organisation, such as small-world organisa-

tion. However, as global measures are an approximation of overall connectivity, there has been

a subsequent drive towards localised assessment for both nodal properties and individual net-

work connections. Note that global network measures have the advantage of reducing local

unreliability by taking an average over all components in the network. On the other hand,

global measures may be inherently limited when the network in question is composed of mod-

ules (sub-networks) with different organisation. For case-control and cross-sectional analyses,

these network properties are often typically assessed by classical statistical approaches, such

as ANOVA, ANCOVA or linear regression. However, even for a small network, applying sta-

tistical tests on nodal or edge-wise variables must correct for multiple comparisons.

Indeed, whole-brain network analyses, potentially involving thousand of edge-wise compar-

isons, have received special attention in the form of mass-univariate testing (Zalesky et al.,

2010a). Network based statistics (NBS) a non-parametric statistical test used to isolate the

components from a n×n connectivity matrix that differ significantly between two populations,

or for regression analysis (Zalesky et al., 2010a). NBS controls the family-wise error rate in

the weak sense, where each of the n(n− 1)/2 edges are tested independently. NBS may of-

fer greater statistical power than conventional procedures for controlling the family-wise error

rate, such as the false discovery rate. Hypothesis testing can be performed using the gen-

eral linear model in order to accommodate a number of different statistical models, such as

ANOVA and linear regression. The authors demonstrated this method using resting-state fMRI

of 12 patients with chronic schizophrenia and 15 healthy volunteers. The method isolated a

‘dysconnected subnetwork’ in the schizophrenic group which comprised fronto-temporal and

occipito-temporal dysconnections. NBS has since been adopted by other researchers and ap-

plied in schizophrenia (Zalesky et al., 2010a, 2011), geriatric depression and mild cognitive

impairment (Bai et al., 2012) and in an ALS cohort (Verstraete et al., 2011, 2013).

In contrast, rather than using conventional hypothesis testing, some researchers have employed

machine learning and dimensionally reduction approaches using cross-validation, for both clas-

sification (Robinson et al., 2010) and regression analysis of structural networks (De Boer et al.,

2010). These studies have identified discriminatory connections which were used to success-

fully classify unseen subjects by age and gender.

2.11 Networks of the brain

Many connectome studies have demonstrated that the human brain and the brains of other

mammals, have various non-trivial properties in their organisation. For instance, the brain is
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characterised by highly connected hub nodes, a modular structure and small-world organisation

(Hagmann et al., 2008; Honey et al., 2008; Sporns, 2011b; Van Den Heuvel and Sporns, 2011;

Yan et al., 2011). The brain network is highly organised and hierarchical, far beyond the organ-

isation expected of a randomly connected network. Several hub nodes, such as the precuneus

and posterior cingulate, participate in many connections and are critical in interhemispheric

communication. Other, so called ‘provincial hubs’ participate in many local connections, but

often have a low degree of connectivity outside their local sub-network.

Researchers have reported an exponential edge weight distribution (Hagmann et al., 2007),

which shows that there are many low weight connections but very few strong connections

within the cortex. Hagmann et al. also reported the tract length distribution, which showed

that there are many short connections in the cortex but very few long range connections. The

authors suggest these findings indicate that the cortex has developed to optimise total wiring

length. Various neuroimaging studies have found the human brain to possess a scale-free prop-

erty (Barabasi and Albert, 1999), particularly in networks of functional connectivity (Van Den

Heuvel et al., 2008).

In a seminal study of network properties, Watts and Strogatz, by measuring a high degree of

local clustering combined with an average short path length between any pair of nodes, deter-

mined that many natural networks have a small-world structure (Watts and Strogatz, 1998). In

such networks most nodes are not direct neighbours but can be reached in a small number of

steps. A network may be considered small-world if it has both: a) a network clustering coeffi-

cient much greater than that of an equivalent randomly connected graph; b) the characteristic

path length is comparable to that of random graph with the same number of nodes and edges.

Rubinov and Sporns (2010) suggest that the significance of network statistics should be estab-

lished by comparison with statistics calculated on null-hypothesis networks. Null-hypothesis

networks have simple random or ordered topologies but preserve basic characteristics of the

original network. The most commonly used null-hypothesis network has a random topology

but shares the size, density and binary degree distribution of the original network.

Small-world properties have been reported at various scales in the human brain for both func-

tional and structural networks (Gong et al., 2009a; Hagmann et al., 2007; Iturria-Medina et al.,

2008; Vaessen et al., 2010) studies. Researchers have suggested that small-world properties are

largely independent of the choice of nodes and spatial resolution. This indicates the presence

of highly connected modular sub-networks that are globally interconnected with relatively few

long range connections (Hagmann et al., 2010b). Network centrality is a measure of the pro-

portion of shortest paths passing through a node. Centrality can be a reliable indicator of a

network hub which interconnects sub-networks. Hagmann et al. identified the posterior cingu-

late and precuneus as hubs nodes in the human cortex (Hagmann et al., 2008). In a widely cited
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study, Gong et al. investigated the effect of age and gender on the structural networks obtained

from dMRI and tractography in a group of 95 subjects aged from 19 to 85 years (Gong et al.,

2009a). They too identified the precuneus and posterior cingulate gyrus as highly connected

hub nodes independent of age or gender. The loss or degeneration of such hubs have found to

be disruptive to network communication (Honey et al., 2008). However, whether the brain’s

organisation is different in the ageing or diseased brain, particularly in areas of pathology,

remains an open question.

2.12 Relation between brain structure and function

Perhaps, the ultimate purpose of the connectome approach is to relate structural connectivity

to brain function. Indeed, functional connectivity must be explained by brain structure in some

way. If the human brain can be reliably segmented into a comprehensive structural network, it

should be expected that these structural connections will correspond to the functional subdivi-

sions at some level (Hagmann et al., 2010a; Bassett and Gazzaniga, 2011).

Behavioural data provides the basis for relating brain circuits to individual differences in cog-

nition and perception. Although techniques such as electroencephalography and magnetoen-

cephalography can be used to measure functional brain activity, connectome research has

primarily focussed on fMRI and resting-state networks (RSNs). fMRI is an MRI acquisi-

tion that indirectly measures brain activity, usually by detecting associated changes via the

blood-oxygen-level dependent contrast – the change in magnetisation between oxygen-rich and

oxygen-poor blood. This methods relies on the assumption that cerebral blood flow is coupled

with neuronal activation, for which there is good evidence (Logothetis et al., 2001). The spatial

resolution of fMRI is roughly equivalent to dMRI and the temporal resolution is in the order

of seconds. fMRI has proved useful in the understanding of higher cognitive functions and in

the study of neurological conditions, such as Alzheimer’s disease, dementia and schizophrenia.

Functional connectivity may be determined by short-term temporal correlations in activity be-

tween spatially distinct brain regions (van den Heuvel and Hulshoff Pol, 2010). Like structural

networks, these interactions can be recorded as pairwise correspondences, which reflect the

level of functional communication between network nodes. fMRI experiments have revealed a

number of functional networks which are consistently found in healthy subjects and for various

functional tasks. RSNs are based on regional interactions that occur when a subject is awake

but not performing an explicit task.

Several attempts have been made to reconcile functional connectivity derived from fMRI with

structural connectivity derived from dMRI and tractography (Hagmann et al., 2008; Skudlarski

et al., 2008; Greicius et al., 2009; Honey et al., 2009; Van Den Heuvel et al., 2009). For
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instance, Hagmann et al. (2008) computed both structural networks from DSI and tractogra-

phy and functional networks from a resting-state fMRI experiment, and then determined that

the strengths of the structural connections were highly predictive (r2 = 0.62) of the strengths

of functional connections for five human volunteers. Similarly, Greicius et al. (2009) found

that resting state functional connectivity reflects structural connectivity (estimated from DTI

and tractography) in the default mode network, a network of brain regions including the me-

dial prefrontal cortex, medial temporal lobes and posterior cingulate cortex. These findings

show that, in part, structural brain organisation explains functional connectivity, but there are

limitations with the spatial and temporal resolution of fMRI. There are also concerns about

measurement noise and whether the fMRI signal may be adversely affected by non-neuronal

artefacts. Although the relationship between structure and function is far from settled, it is

clear that a comprehensive map of the structural connections of the brain is a prerequisite for

understanding the basis of functional connectivity.

2.13 Critique of current techniques

Recent test-retest findings suggest that current connectome mapping techniques are adequate

for reliably measuring global network measures (Bassett et al., 2010; Cammoun et al., 2011;

Hagmann et al., 2008; Vaessen et al., 2010; Zalesky et al., 2010b). However, the reliability of

regional network measures are not yet well studied, an aspect we seek to address in this work.

Any unreliability in network measures may lead to concerns about the validity of studies based

on such measures. Inter-session differences in network measures have been reported previously

(Vaessen et al., 2010; Bassett et al., 2010). Some variation may be due to scanner noise and

inhomogeneities between sessions and some may be due to systematic variation in process-

ing. Evidently, many intermediate steps are involved in generating structural networks from

dMRI data. Given concerns about local unreliability, it may prove informative to assess test-

retest agreement at key intermediate stages in network construction, specifically registration,

neuroanatomical segmentation and tractography.

The connectome approach is challenging because often a correspondence between network

nodes across subjects is required. Achieving neuroanatomical segmentation requires at least:

1) robust anatomical segmentation of the cortex with high test-retest reliability; 2) accurate

local registration of ROIs with sub-centimetre spatial error. As the performance of these two

requirements degrades the lower the signal-to-noise ratio in the resulting network becomes.

It should be noted that the task of automated cortical labelling is extremely challenging. Error

may arise from registration error and further error may arise from systematic variation in the

parcellation procedure. Consequently, any subsequent processing based on these segmentations
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will be affected by these sources of error. The choice of nodes is hugely important (Hagmann

et al., 2007; Zalesky et al., 2010b). We cannot expect to map tracts with a diameter smaller

than the imaging resolution. Increasing the number of nodes and making the overall ROI size

smaller would increase the mapping resolution but will increase measurement noise. However,

using too few large nodes may fail to capture genuine structural connections. Ideally, we wish

to establish a network resolution where the contributions from the genuine connections are

measurably larger than the noise contribution.

The ability of tractography to estimate accurately the location and orientation of the underlying

tracts has not been comprehensively validated in the human brain. Large test-retest variation

in tractography parameters may reflect errors in estimating the underlying axonal fibre tracts

within a region, with some variation due to both segmentation error and methodological issues

in streamline construction. In addition, determining endpoints of a streamline is a well-known

weakness of current tractography techniques (Jbabdi and Johansen-Berg, 2011).

Additionally, some commentators have raised fundamental concerns with the purpose of the

connectome approach (Jabr, 2012). With contemporary MRI, tissue structure can be resolved

at around one millimetre resolution. However, approximately forty thousand neurons may

be within 1 mm3 of cortex (Crick and Jones, 1993), meaning the state-of-the-art resolution

estimates of connectivity are far from the neuronal level and must be considered somewhat

crude approximations of the underlying structure. It remains difficult to reconcile the disparity

between a 90 billion node neuronal network at the mesoscopic scale and a one hundred node

network obtained from MRI. It could even be argued that current MRI networks are entirely

incompatible with cellular neuroscience.

Arguably, even a mesoscopic connectome does not contain all the necessary information to

understand the brain. Firstly, a connectome is merely a snapshot of the brain at a particular time

and does not capture the ongoing changes in connectivity or the unique physiology of individual

neurons, which may be embodied in various functions. Secondly, it records no information on

the glial cells, numerous cells which were originally thought to just help and nourish neurons,

which some researchers now believe contribute to information processing (Araque et al., 1999).

Finally, determining by any known method how signals pass through a system as complex as

the mammalian brain at the cellular and synaptic level, currently seems so intractable that it

is unlikely that it can be achieved in the near future. Nevertheless, despite these criticisms we

believe that a low resolution macroscopic map derived from MRI will undoubtedly be useful

in understanding fundamental brain connectivity and function.
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2.14 Motivation

In the following chapters we seek to address some of the concerns relating to brain networks

obtained from MRI by evaluating several key steps and representations in the construction of

networks. We intend to test the assumptions that current techniques are sufficient to divide grey

matter structures into appropriate anatomical nodes and that tractography is capable of reliably

and repeatedly measuring the connectivity between these brain regions.





Chapter 3

Methods

3.1 Overview

We developed an automated connectivity mapping pipeline to construct white matter structural

networks from dMRI data. Where appropriate we used freely available neuroimaging toolkits

to process both T1-weighted and dMRI data. One aim of this research was to compare a number

of alternative techniques and parameter settings at crucial stages in network construction. For

example, we assessed linear and nonlinear methods of image registration, alternative cortical

atlases, alternative definitions of connectivity and various network weightings. A conceptual

view of network construction is presented in Figure 3.1.

For each subject we acquired 3D T1-weighted volume scans and dMRI data in the same session.

Our method involved automated brain extraction from 3D T1-weighted volumes, grey and white

matter segmentation and parcellation of the cortex into 84, 85 or 164 ROIs per subject based on

anatomical boundaries (FreeSurfer). A registration step was necessary to align these cortical

ROIs to dMRI space, and to a lesser extent correct for systematic EPI distortions associated

with the dMRI protocol. Both deterministic and probabilistic tractography was initiated from

dMRI voxels using established algorithms with tracts constructed from voxel to voxel until

terminated by specific stopping criteria. Structural connections between all brain areas were

computed by quantifying tracts found between all ROI pairs in an adjacency matrix. A number

of weighting strategies were considered to correct for between-subject differences in brain and

ROI size. For each network, we computed various graph-theoretic measures which may be

used to characterise patterns of connectivity.

In the remainder of this chapter we discuss the various steps of network construction and analy-

ses used in this work, with particular focus on the tractography techniques, network weightings

and network measures.

43
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Figure 3.1: Conceptual overview of the connectivity mapping pipeline.

3.2 MRI acquisition

Our work made use of three MRI datasets gathered at the Brain Research Imaging Centre,

University of Edinburgh. The first of these was a test-retest MRI dataset involving ten healthy

volunteers aged between 50 and 58 years who were scanned twice using an identical protocol

2–3 days apart (Principal Investigator: Dr. Cyril Pernet, University of Edinburgh). The study

was approved by the South East Scotland Research Ethics Committee 01. The second study

was a case-control ALS dataset involving 30 ALS patients and 30 age- and education-matched

healthy controls (Principal Investigator: Prof. Sharon Abrahams, University of Edinburgh).

The study was approved by the National Health Service Scotland Research Ethics Committee.

The third study was a cross-sectional dataset of 80 healthy, right-handed, volunteers aged be-

tween 25 and 65 years (Principal Investigator: Dr. Mark Bastin, University of Edinburgh). The

study was approved by the Lothian Research Ethics Committees (REC 05/S1104/45). These

three datasets are described in the following chapters. All participants provided informed con-

sent.

All imaging data were acquired using a GE Signa Horizon HDxt 1.5 T clinical scanner (General

Electric, Milwaukee, WI, USA) equipped with a self-shielding gradient set (33 mT/m maxi-

mum gradient strength) and manufacturer supplied 8-channel phased-array head coil. For the

dMRI protocol, single-shot spin-echo echo-planar (EP) diffusion-weighted whole-brain vol-
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umes (b = 1000 s mm−2) were acquired with diffusion gradients applied in 64 non-collinear

directions, along with seven T2-weighted (b = 0 s mm−2) volumes (Jones et al., 2002). The

repetition and echo times were 16.5 s and 98.3 ms, respectively. Seventy-two contiguous ax-

ial 2 mm thick slices were acquired resulting in 2 mm isotropic voxels. In the same session,

high resolution 3D T1-weighted inversion-recovery prepared, fast spoiled gradient-echo vol-

umes were acquired in the coronal plane with 180 contiguous 1.3 mm thick slices resulting in

voxel dimensions of 1×1×1.3 mm. The acquisition took approximately 20 minutes.

3.3 Neuroanatomical segmentation

In order to form a corresponding set of network nodes across subjects it was necessary to divide

each T1-weighted brain into distinct neuroanatomical regions. The choice of nodes is an im-

portant consideration for network analysis (Zalesky et al., 2010b). For this purpose, volumetric

segmentation and cortical reconstruction was performed with the FreeSurfer image analysis

suite1. This set of tools performed automated skull stripping and brain extraction (Ségonne

et al., 2004), intensity normalisation (Sled et al., 1998), automated Talairach transformation,

grey and white matter segmentation, and surface parcellation including complete labelling of

cortical sulci and gyri (Desikan et al., 2006; Destrieux et al., 2010; Fischl et al., 2004b). T1-

weighted volumes were conformed to 1 mm isotropic voxels. These processing steps were

fully automated using default parameters (FreeSurfer version 5.3.0). Brain extraction and tis-

sue segmentation were visually checked for each subject. FreeSurfer performed segmentation

of sub-cortical grey matter structures in a separate processing stream from the cortical segmen-

tation (Fischl et al., 2002, 2004a). Eight subcortical structures were retained per hemisphere,

which were the thalamus, hippocampus, amygdala, caudate, putamen, pallidum, accumbens

area and ventral diencephalon. In some experiments the brain stem was also used. FreeSurfer

morphometric procedures have been demonstrated to show good test-retest reliability across

scanner manufacturers and across field strengths (Han et al., 2006; Wonderlick et al., 2009;

Reuter et al., 2012), although other studies have shown discrepancies in test-retest reliability

(Morey et al., 2010; Gronenschild et al., 2012).

3.3.1 Cortical atlases

Two cortical atlases provided by the FreeSurfer package were used. These were the Desikan-

Killiany atlas (Desikan et al., 2006) with 34 cortical structures per hemisphere (Figure 3.2),

and the Destrieux atlas (Destrieux et al., 2010) with 74 sulco-gyral structures per hemisphere.

1http://surfer.nmr.mgh.harvard.edu (Martinos Center for Biomedical Imaging)

http://surfer.nmr.mgh.harvard.edu
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Figure 3.2: Deskian-Killiany cortical atlas: Pial (left) and inflated (right) cortical representations

of the regions of interest in one hemisphere. The top row illustrates the lateral view of the

hemisphere while the bottom row shows the medial view of the hemisphere. Adapted from

(Desikan et al., 2006).

In brief, cortical parcellation is achieved using spatial intensity gradients and by learning asso-

ciated rules across tissue classes following a supervised probabilistic approach trained with a

manually labelled dataset. The Desikan-Killiany atlas is based on a set of 40 manual annota-

tions of MRI scans from three age groups (19–24, 41–57 and 71–86 years of age) with a range

of atrophy. The intention in using this varied set of training data is that the supervised learning

procedure will generalise to a wide range of ages and be robust to age-related degeneration.

Similarly, the Destrieux atlas is based on regions derived from sulcal and gyral boundaries

from a manually labelled set of 12 volunteers (18–33 years of age).

We created parcellations using both atlases to allow comparison between node configuration,

with the assumption that the Desikan-Killiany atlas may generate more reliable node properties

because using fewer and larger regions minimises the effects of image noise, registration arte-

fact and systematic error. Following anatomical segmentation, 84 or 164 grey matter regions

were retained per subject. Both configurations included the same 16 sub-cortical structures -

only the cortical ROIs differ. For those experiments including the brain stem, 85 or 165 nodes

were used per subject. For each subject, the ROIs were labelled and stored in 3D volumes.

For each grey matter region, the total ROI volume, in T1-weighted space, computed by the

parcellation procedure was recorded.
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Figure 3.3: Transverse slices showing the grey and white matter masks obtained from the

segmentation procedure, overlaid on the T1-weighted extracted brain (57 year old male).

3.3.2 Mask construction

Additionally, the results of the segmentation procedure were used to construct three binary

mask volumes per subject, namely a grey matter mask, a white matter mask and whole-brain

tracking mask. The grey and white matter mask were constructed from the results of the tissue

segmentation procedure (Fischl et al., 2004b). By definition these tissue classes do not overlap.

The cerebellum was removed from both tissue masks as were any regions of CSF identified

by the segmentation procedure, including the left and right lateral ventricles, and the third

and fourth ventricles. The whole-brain tracking mask was constructed from a union of the

grey and white matter masks. These masks were used in subsequent processing to constrain

tractography. Note that under this masking approach the spatial limits of tracking are dependent

on the accuracy of the segmentation procedure and on the subsequent registration procedure.

Figure 3.3 shows the grey and white matter masks for one subject.

3.4 Diffusion processing

Using tools available in the FSL toolkit2, dMRI (EPI) data were corrected for patient mo-

tion and eddy-current induced distortions observed in single-shot EPI volumes. Correction

was based on a simple model for eddy-current artefacts that using an affine transform with 12

2http://www.fmrib.ox.ac.uk/fsl/ (FMRIB, Oxford University)

http://www.fmrib.ox.ac.uk/fsl/


48 Chapter 3. Methods

Figure 3.4: Coronal slice of the colour-encoded principal diffusion directions and the corre-

sponding FA values with lines representing the principal orientations and magnitudes of diffusion

(57 year old male).

degrees-of-freedom (DOF). EPI volumes were corrected by estimating an affine transform to

the first T2-weighted (b = 0 s mm−2) volume of each subject (Jenkinson and Smith, 2001).

Diffusion tensors were then fitted at each voxel and diffusion imaging parameters, 〈D〉 and

FA were calculated by Equation 2.6 and 2.7, respectively. Figure 3.4 illustrates the principal

orientations and magnitudes of diffusion for one subject. All diffusion parameters and subse-

quent tractography were computed in native space. Skull stripping and brain extraction was

performed (Smith, 2002) on T2-weighted volumes acquired along with the diffusion-weighted

data and applied to the FA volume of each session (Figure 3.5).

3.5 Registration

A registration step was necessary to align each subject’s anatomical ROIs from T1-weighted

space to diffusion space. Registration was performed using established algorithms available in

FSL. For comparison, we computed both linear and nonlinear transformations. In each case

the transform was computed from dMRI space to T1 weighted space and the inverse transforms

computed.

3.5.1 Linear registration

Firstly, we employed a method of computing an affine transform with 12 degrees of freedom

(DOF). These 12 parameters define a linear transformation based on translation, rotation, scale

and shear in three dimensions. A transformation matrix and coordinate vectors, x,y,z, can be

multiplied to generate the transformed coordinates x′,y′,z′,
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Figure 3.5: Transverse slices of an FA volume showing the estimated diffusion anisotropy at

each voxel following skull stripping (51 year old male).
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We used an established linear registration algorithm (FLIRT, Jenkinson and Smith 2001; Jenk-

inson et al. 2002) to estimate an alignment of each brain-extracted FA volume to the corre-

sponding FreeSurfer extracted brain. Notably, using the brain extracted FA volume as the reg-

istration target was found to improve registration results in comparison to using a T2-weighted

extracted brain (see Section 4.6.2). In principle, same-subject registration only requires 6 DOF

(translation, rotation and scale) as a rigid body transform should capture all same-subject trans-

forms. However, in practice 12 DOF was found to improve upon 6 DOF as it allowed further

correction of the EP-induced distortions observed in the dMRI volumes. We used a mutual

information cost function, suitable for cross-modal registration which was minimised to find

the optimal set of transformation parameters (Jenkinson and Smith, 2001),

H(X ,Y )−H(X)−H(Y ). (3.2)
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3.5.2 Nonlinear registration

We also used a nonlinear deformation field based method to refine local alignment (FNIRT,

Andersson et al. 2007). The general transformation for nonlinear registration takes the form,
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
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dy(x,y,z)

dz(x,y,z)

1

 , (3.3)

where M is an affine transform matrix as described above and di(x,y,z) are the displacement

fields, which describe the displacement direction for a sampling point at each coordinate. The

algorithm uses splines to determine the deformation field and performs a constrained optimisa-

tion of local deformations based on a mutual information cost function using the FA paramet-

ric map as a registration target. This method requires a sensible initialisation to avoid failed

registrations (local minima in the search space), for which we used the affine transformation

estimated by the linear registration described above. The inverse warp-field was then computed

to obtain the required transforms from T1-weighted space to diffusion space.

3.5.3 Resampling

Cerebral segmentations and grey matter, white matter and tracking masks were aligned to dif-

fusion space by applying these transforms using nearest neighbour resampling. For visual

inspection, each T1-weighted extracted brain was also aligned to diffusion space using trilinear

resampling. These masks were then used to constrain tractography to white matter structures

and targeted cerebral voxels.

3.6 Tractography

Whole-brain tractography was performed using two established tractography algorithms: one

based on deterministic tensor tractography (Mori et al., 1999), and a probabilistic tractography

algorithm modelling two fibre directions at each voxel (Behrens et al., 2003b, 2007). The de-

terministic approach estimates the best fit of the diffusion tensor model at each voxel, whereas

the probabilistic approach estimates a distribution of possible orientations. For both algorithms

we incorporated additional streamline termination criteria as described below.
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Figure 3.6: An illustration of a deterministic streamline tracking algorithm in 2D. Two streamlines

follow the maximal directions of diffusion from a seed point. Adapted from (Mori and Zhang,

2006).

3.6.1 Deterministic tensor tractography

For deterministic tracking we used a modified version of FACT (Mori et al., 1999) with addi-

tional streamline termination criteria using the Camino diffusion toolkit3 (Cook et al., 2006).

The tensor model of diffusion (Section 2.4.3) determined the principal orientation and mag-

nitude of diffusion at a voxel location, by the first eigenvector and the associated eigenvalue.

Streamlines were simply constructed from voxel-to-voxel using local path integration, such that

the principal directions estimated from the diffusion tensor are coherently aligned along fibre

tracts of maximal diffusion. Each streamline was constructed from a specified seed voxel in this

way, until terminated by the stopping criteria. Figure 3.6 shows an illustration of deterministic

streamline tracking in two dimensions.

3.6.2 Probabilistic tractography

Probabilistic tractography made use of the fully model-based method in FSL’s diffusion toolkit

(FDT), known as Bayesian estimation of diffusion parameters obtained using sampling tech-

niques (BEDPOST; Behrens et al. 2003b). The distributions for tracking were generated with

a two-fibre model per voxel (Behrens et al., 2007). This method makes a selection between the

single or two-fibre case based on evidence from the diffusion data at each voxel, in order to

simplify tracking with multiple fibre orientations. Behrens et al. have previously demonstrated

that multi-fibre tractography improves sensitivity in whole-brain fibre tracking but does not dra-

3http://cmic.cs.ucl.ac.uk/camino/ (Microstructure Imaging Group, University College London)

http://cmic.cs.ucl.ac.uk/camino/
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matically change tractography for major white matter pathways with high diffusion anisotropy,

compared to a single-fibre model.

This fibre model is a partial volume model, such that the diffusion signal for each fibre ori-

entation is a mixture of two Gaussians, divided into an infinitely anisotropic component and a

single isotropic component. The predicted diffusion weighted signal, µi was modelled as,

µi = S0

(
(1−

N

∑
j=1

f j)exp(−biD)+
N

∑
j=1

f j exp(−biDrT
i R jART

j riri)

)
, (3.4)

along a gradient direction ri with b-value bi associated with the ith diffusion encoding direction.

S0 is the signal with no diffusion weighting, D is the diffusivity, f j is the fraction of signal

and R jART
j is the anisotropic diffusion tensor along the jth fibre orientation and N = 2 (the

maximum number of fibres). Consequently, A is fixed as,

A =


1 0 0

0 0 0

0 0 0

 , (3.5)

and R j rotates A to align with the fibre direction of the voxel, requiring two angle parameters

(θ j,φ j). The noise component is modelled separately as an independently identically dis-

tributed Gaussian with a mean of zero and standard deviation of σ. The full model parameter

list is ω = (S0,D, f1, f2,θ1,θ2,φ1,φ2,σ,η), where η is the width of a Beta distribution used in

model selection. The probability of observing the data at each voxel Y , given the model M and

the set of parameters ω is,

P(Y |ω,M) =
n

∏
i=1

P(Yi|ω,M) (3.6)

where,

P(Yi|ω,M)∼N (µi,σ). (3.7)

The authors used a number of non-informative prior distributions on these model parameters,

as described in Behrens et al. (2007). The posterior distribution over these parameters is given

by Bayes’ rule,

P(ω|Y,M) =
P(Y |ω,M)P(ω|M)

P(Y |M)
(3.8)

Bayesian estimation was used to fit the parameters of the model to the signal at each voxel.

Behrens et al. used a model selection technique called automatic relevance determination

based on evidence from the diffusion data to select between the single and two-fibre models, in

order to avoid poor estimation by fitting an inappropriate fibre model. As the model estimates

cannot be solved analytically, estimation was performed using Metropolis-Hastings Markov

chain Monte Carlo (MCMC) sampling after marginalising over the model parameters.
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Probabilistic tracking (ProbTrack) proceeds by sampling from these distributions repeatedly

during streamline tracking. Starting at a specified seed voxel, we used the algorithm to select

a random sample (θ j,φ j) from P(θ j,φ j|M) and then propagate the streamline in the selected

direction by 0.5 mm. Sampling was repeated in this manner at each location until tracking was

terminated by the stopping criteria. Interpolation in tracking was used as described in Behrens

et al. (2003b) for which a sample is drawn from one of two adjacent voxels in each dimension.

We repeated the procedure for generating streamlines 100 times for each seed point. Tracking

results in a set of probabilistic streamlines with many possible end points per seed point. This

spatial distribution of streamlines permits a connection probability to be calculated, which

describes the likelihood of global connection between any two locations.

3.6.3 Seeding

We employed two alternative seeding approaches, namely WM-seeding and GM-seeding. Un-

der WM-seeding, tracking was initiated from all white matter voxels and streamlines were

constructed in two collinear directions until terminated by the stopping criteria. Under the

GM-seeding approach, tracking was initiated from all grey matter voxels (within an ROI) and

streamlines were constructed in a single direction until terminated by the same stopping crite-

ria.

3.6.4 Termination criteria

The termination criteria was the same for both tractography algorithms and both seeding con-

figurations. Tracking of a streamline was terminated by any of the following constraints:

1. entering a voxel with FA below 0.1,

2. entering an extra-cerebral voxel outside the tracking mask,

3. exceeding a threshold on the in-plane angle from voxel to voxel,

4. exceeding a distance ratio metric of 10.

The distance ratio metric (DM) is a simple measure of tortuosity defined as a ratio between the

actual path length along a curve, l, and the linear distance between start point and end point, c,

DM =
l
c
. (3.9)

This measure has previously been used to determine the tortuosity of cerebral blood vessels

(Bullitt et al., 2003), but in this work was used to identify an implausible accumulation of

turns along white matter tracts, which are believed to be efficiently wired (Sporns, 2011a). We
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empirically set the threshold at DM > 10, as this was observed to filter the most implausible

streamlines but did not impact on the sharp turning ‘U-fibres’ observed in the corpus callosum.

Note that the DM measures an accumulation of turns, but the in-plane angle constraint can only

identify a single unacceptable turn along a streamline.

Four thresholds on the in-plane angle curvature were investigated in Section 4.6.5. The value

of the anisotropy constraint was set empirically. We determined that an FA threshold > 0.1

can in some cases be too conservative for whole-brain tracking and a threshold of 0.1 was

preferable to ensure tracking into grey matter regions. Other network studies have also used

such a threshold (Verstraete et al., 2011). Although this threshold is low when compared to

conventional tractography, there remains a need for a threshold on the minimum acceptable

anisotropy in order to minimise false streamlines in highly isotropic areas of diffusion, for

example, in cortical grey matter.

3.6.5 Streamline post-processing

Streamlines may be further filtered depending on the type of macro-connectivity under analysis.

We used two waypoint constraints in order to minimise the number of spurious streamlines. For

some experiments an entire streamline was discarded if the total path length in white matter

was: 1) less than a minimum length; 2) exceeded a maximum length. The motivation for the

minimum waypoint constraint is to filter short implausible streamlines, which pass from one

grey matter region to the another, without passing through white matter, which is possible under

GM-seeding. A number of limits on the minimum waypoint length were explored in Chapter

4. The maximum length constraint was set at 20 cm for all experiments and any streamline

with a white matter length exceeding this was considered erroneous.

3.6.6 Streamline density

For inspection of tractography data before the connectivity mapping procedure we computed

anatomical connectivity maps (ACMs), which record the streamline density per voxel (Emble-

ton et al., 2007). For each voxel in diffusion space, the streamline density is computed as the

number of streamlines which pass through that voxel divided by the total number of streamlines

seeded (per subject). Such maps (Figure 3.7) have been used to visualise patterns of connec-

tivity and allow quantification of both global and regional differences between tractography

algorithms.
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Figure 3.7: Transverse slices indicating the streamline density at each voxel at each voxel

(51 year old male). In this case streamlines were computed with 100 iterations of probabilistic

tractography using WM-seeding.

3.7 Network construction

Connections between all ROIs (network nodes) may then be computed by quantifying the tracts

reconstructed between all possible pairs of nodes. The pairwise relationship between a pair of

nodes defines the topological connection.

3.7.1 Streamline connectivity

Network connections were determined by identifying the endpoint of each streamline. Note

that the endpoints are strongly affected by the somewhat arbitrary stopping criteria during

tracking. Streamline termination is a well-known weakness of current tractography techniques

(Jbabdi and Johansen-Berg, 2011); there is no means to prevent some streamlines from either

ending prematurely or extending past the true endpoint.

Figure 3.8 illustrates three streamline configurations. Only in the simplest case (s1) do we have

a single unambiguous connection between two nodes. However, in many cases (s2 and s3),

there are a number of alternative ways to consider the connectivity between regions. We imple-

mented four alternative methods for determining the connectivity between grey matter nodes on
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a

b

c

s1

s2

s3

Figure 3.8: Illustration of three example streamlines (s1, s2, s3) and regions (a, b, c): Seed

points are highlighted and “absolute” termination points are shown in red. Streamline s1 unam-

biguously connects regions a and b. However, in the case of s2 and s3, there are a number of

alternative ways to consider the connectivity between regions.

a streamline, which we termed absolute, first, last and complete. The above definitions gener-

ate different measures of connectivity in the (not uncommon) case that a streamline apparently

passes through multiple grey matter ROIs before it terminates. In each case a streamline is

tracked from the seed point. Under absolute connectivity the endpoint is simply the ROI (if

any) at the position of streamline termination. Under first connectivity the endpoint is consid-

ered to be the first ROI encountered when tracking from the seed location and any subsequent

ROI encountered on the streamline is discounted. Under last connectivity the endpoint is con-

sidered to be the last ROI encountered when tracking from the seed location and any preceding

ROI encountered is discounted. Under “complete” connectivity each ROI falling along the en-

tire length of a streamline is considered to be interconnected (with equal weight). In all cases,

streamlines which do not start and end within an ROI are discarded. The four definitions are

quantitatively compared in Chapter 4.

3.7.2 The adjacency matrix

For each subject, connections were recorded in a n×n adjacency matrix a where the entry ai j

denotes the measure of connection ‘strength’ between node i and node j.

3.7.3 Network weighting

In this work, three types of network weighting were considered – two based on streamline

density and a third on tract-averaged FA. The first weighting, termed streamline density (SD-

weighted), records the interconnecting streamline density corrected for ROI size,
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ai j =
2

gi +g j
|Si j|, (3.10)

where Si j is the set of all streamlines found between node i and node j (and Si j = S ji), and

gi and g j are the number of grey matter voxels in nodes i and j, respectively. The second

weighting, termed streamline density with length correction (SDL-weighted), again records

streamline density but with a correction for streamline length (Hagmann et al., 2008),

ai j =
2

gi +g j
∑

s∈Si j

1
l(s)

, (3.11)

where l(s) is the length of streamline s between node i and node j. The rationale for the

normalisation by g (Eq. 3.10, 3.11) is to correct for between-subject variability in grey mat-

ter volume, since the number of possible entry/exit points per region is proportional to grey

matter volume (Hagmann et al., 2008). For example, MRI studies have shown differences in

brain volume by gender and age (Good et al., 2001; Resnick et al., 2003; Sullivan et al., 2004).

Additionally, inter-subject variation in GM volume may affect the number of tracts seeded by

tractography. As a result, it may be necessary to normalise weightings in order to allow rep-

resentative comparison of connectivity between subjects. The rationale for streamline length

normalisation (Eq. 3.11) is twofold: 1) to compensate for the accumulated tractography errors

which increase with streamline length; and 2) to correct for a bias in repeatedly identifying

long tracts when seeding from white matter (Hagmann et al., 2008). FA-weighted networks

were constructed from the same set of streamlines by recording the mean FA value along inter-

connecting streamlines. Each entry in the adjacency matrix was computed,

ai j =
1
|Si j| ∑

s∈Si j

∑v∈Vs FA(v)
ms

, (3.12)

where Vs is the set of voxels (of size ms) found along the streamline s between node i and node

j, and FA measures the diffusion anisotropy per voxel.

For each type of weighting, the result is an undirected positive-weighted graph. Each matrix is

symmetric by definition as Si j = S ji and tractography cannot distinguish between afferent and

efferent connections. Self-connections, aii, were removed (set to zero). While self-connections

reveal something about the grey-white matter interface of each node, these values are typically

discarded for network analyses as they have no role in assessing inter-connections4.

4A large number of self-connections may indicate that the granularity of grey matter ROIs is too course and
streamlines of short length are misinterpreted as self-loops.
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3.8 Network properties

Considering the entire brain as a network of nodes enables use of graph-theoretic measures to

assess the connections obtained from tractography. Network properties may then be used to

characterise the overall organisation of the brain at a global, nodal or edge-wise level (Rubinov

and Sporns, 2010). Where possible, network properties were computed using weighted variants

rather than binarising the adjacency matrices.

Before specifying network measures we first define some basic notation (Rubinov and Sporns,

2010). N is the set of all nodes in the network, n is the number of nodes and a is an undirected

weighted graph, stored as a n×n adjacency matrix, where ai j indicates the connection weight

between node i and node j. Note that, in this work a graph and an adjacency matrix are

equivalent representations of a network. A graph is defined as G = {V,E}, where V is a set of

vertices (nodes) and E is the set of edges (connections) which connect a pair of nodes.

Each weighted adjacency matrix has a corresponding binarised adjacency matrix b where

bi j =

0 if ai j = 0,

1 if ai j > 0.
(3.13)

3.8.1 Thresholding

We considered two alternative methods for thresholding of network connections, which may

be used to remove weak or spurious connections. A threshold on network weights may be

computed,

âi j =

0 if ai j < τ,

ai j if ai j ≥ τ,
(3.14)

where τ is the network weight at a quantile of interest. Alternatively, a threshold on network

connections may be computed by proportion,

âi j =

0 if Πi j < π,

ai j if Πi j ≥ π,
(3.15)

where the value Πi j is the proportion of subjects for which ai j > 0, and π is the threshold on

this proportion.
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3.8.2 Basic properties

The degree of a node i, measures the number of connecting links (see Figure 3.9(a)),

ki = ∑
j∈N

bi j. (3.16)

The mean node degree (network density), is a commonly used measure of global connectivity

or total “wiring cost”,

K =
1
n ∑

i∈N
ki. (3.17)

For a weighted graph, the strength of a node i is an analogous measure to the node degree

incorporating weighting,

wi = ∑
j∈N

ai j. (3.18)

The mean node strength (network strength), is calculated

W =
1
n ∑

i∈N
wi. (3.19)

The network sparsity is calculated,

S =
n2−n−∑i∈N ki

n2−n
, (3.20)

reflecting the count of non-zero edges in the observed network, where S is between 0 and 1 and

is inversely proportional to the network degree.

3.8.3 The distance matrix

From the adjacency matrix a distance matrix, d, was constructed, recording the shortest weighted

path length (distance), between node i and node j,

di j = ∑
auv∈gi↔ j

f (auv), (3.21)

where f is a mapping from weight to length and gi↔ j is the shortest weighted path between i

and j (Rubinov and Sporns, 2010). The shortest weighted paths can be computed efficiently by

Dijkstra’s algorithm (Dijkstra, 1959). For instance, we used an inverse mapping from weight

to length to reflect that tracts with higher connection probability are ‘stronger’ links. Note that,

although there may exist many paths between a pair of nodes, this measure only considers the

shortest, i.e. the path with smallest cumulative weighting (see Figure 3.9(b)).

Many established network measures are derived from the adjacency and distance matrices.

The following metrics may be categorised as measures of integration, segregation, centrality,

modularity or those measuring other properties such as ‘small-worldness’.
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(a) (b)

Figure 3.9: Network example where for simplicity, all edges have a weight of one: a) Node b

has four direct neighbours and therefore has a node degree of four. Overall, the mean node

degree of this network is 12
6 = 2. The clustering coefficient of node b is the number of existing

connections betweens node b’s neighbours (d-e) divided by all possible connections (a-c, a-d,

a-e, c-d, c-e, d-e) between the same set of neighbours, in this case, 1
6 . The mean clustering

coefficient of the network is 1
3 ; b) The shortest path length between node a and node f is three,

indicated by the dashed line. The characteristic path length (mean shortest path length) of the

network is 52
36 = 13

9 .

3.8.4 Measures of integration

The weighted characteristic path length (Watts and Strogatz, 1998) of a network,

L =
1
n ∑

i∈N

∑ j∈N, j 6=i di j

n−1
, (3.22)

is the average shortest weighted path length between all pairs of nodes in the network and

is a commonly used measured of integration. For instance, a small characteristic path length

indicates an average short distance between all pairs of nodes.

The global efficiency (Latora and Marchiori, 2001) of a network is computed,

E =
1
n ∑

i∈N

∑ j∈N, j 6=i d−1
i j

n−1
, (3.23)

and is inversely related to the characteristic path length.

3.8.5 Measures of segregation

Considering a node’s set of directly connected neighbours, the weighted clustering coefficient

(Watts and Strogatz, 1998; Onnela et al., 2005) of a node i is calculated,

ci =
1
n ∑

i∈N

∑ j,h∈N(ai jaiha jh)
1/3

ki(ki−1)
. (3.24)
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The clustering coefficient measures the number of actual edges connecting neighbours divided

by the maximum number of possible edges between the same set of neighbours. It may be

interpreted as a measure of how many local clusters exist in the network. For instance, a high

clustering coefficient indicates that a node’s neighbours are also well-connected to each other,

i.e. they form a cluster. The mean clustering coefficient is a global measure of a network’s

clustering,

C =
1
n ∑

i∈N
Ci. (3.25)

The transitivity of a network (Newman, 2003), is a normalised variant of the clustering coeffi-

cient removing bias due to nodes with low degree and is computed,

T =
∑i∈N ∑ j,h∈N(ai jaiha jh)

1/3

∑i∈N ki(ki−1)
. (3.26)

3.8.6 Measures of centrality

Measures of centrality may be used to identify highly connected nodes, such as network hubs.

The betweenness centrality (Freeman, 1979) of a node i is,

bi =
1

(n−1)(n−2) ∑
h, j∈N,h6= j,h6=i, j 6=i

ρh j(i)
ρh j

, (3.27)

where ρh j is the number of shortest paths between h and j and ρh j(i) is the number of shortest

paths between h and j that pass through i. Essentially, betweenness centrality measures the

fraction of shortest paths in the network that pass through a given node (see Figure 3.10).

3.8.7 Measures of modularity

The within-module degree z-score and module participation coefficient (Guimerà and Amaral,

2005) measure intra- and inter-module properties by defining sub-networks (modules). For

modular measures the network is fully divided into a set M of non-overlapping modules, e.g.

by lobe or hemisphere, where m is the number of modules.

The within-module degree z-score (Guimerà and Amaral, 2005) of node i is is a statistical

measure of within-module degree centrality,

zi =
ki(mi)− k̄(mi)

σk(mi)
. (3.28)

The participation coefficient (Guimerà and Amaral, 2005) of node i,

yi = 1− ∑
m∈M

(
ki(mi)

ki
)2, (3.29)

is a measure of inter-module connectivity, reflecting the diversity of connections of a node to

nodes in other modules (see Figure 3.10).
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Figure 3.10: Network example with two modules. Node a has a betweenness centrality of seven

as there are seven shortest paths passing through a. Likewise, node b has a betweenness cen-

trality of 25, the greatest of any node in the network. Consequently, node b may be considered a

‘hub’ node. In this modular network only nodes b and c have a non-zero participation coefficient,

i.e. the other nodes do not link beyond the module they belong to.

3.8.8 The small-world property

A measure of network small-worldness (Humphries and Gurney, 2008),

S =
C/Cr

L/Lr
, (3.30)

where C is the clustering coefficient and L the characteristic path length of a network and Cr

is the clustering coefficient and Lr the characteristic path length of a random network, usually

constructed with node degree matching the network in question. Small-world networks typi-

cally have S > 1. For example, networks associated with ageing or disease may become either

increasingly small world or random.

3.9 Network-based statistics

NBS is a non-parametric technique for identifying network differences (Zalesky et al., 2010a).

NBS performs mass-univariate testing at each network connection and exploits the connected-

ness of network components to offer a potential gain in statistical power (through permutation

test). NBS controls the family-wise error rate, in the weak sense, when the null hypothesis is

tested independently at each of the n(n−1)/2 edges comprising the connectivity matrix. NBS

can provide greater statistical power than conventional procedures for controlling the family-

wise error rate, such as the false discovery rate, if the set of edges at which the null hypothesis

is rejected constitutes a large component or components.

For example, to perform a two group contrast, NBS comprises fours steps as illustrated in

Figure 3.11): 1) Perform a two-sample t-test at each edge independently to test the hypothesis

that the value of connectivity between the two populations come from distributions with equal
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Group 1 Group 2

Individual 
connectivity 
matrices

Group contrast:
t-test

Find connected 
components

Difference 
matrix

Permutation testing: randomise 
group assignment

Figure 3.11: Conceptual overview of group-contrast using NBS.

means. 2) Threshold the t-statistic available at each edge to form a set of suprathreshold edges

and obtain a difference matrix. 3) Identify any connected network components (subnetworks)

in the difference matrix defined by the set of suprathreshold edges. These are referred to

as observed components. Compute the magnitude of each observed component identified.

4) Repeat steps 1-3 k times, each time randomly permuting members of the two populations

and storing the size of the largest component identified for each permutation. This yields an

empirical estimate of the null distribution of maximal component size. A corrected p-value for

each observed component cans then calculated from the null distributions.

3.10 Summation

In this chapter we have described a varied set of methods for constructing brain networks from

structural and diffusion MRI data. In particular, we have focussed on methods for plausi-

ble streamline generation and have considered a number of viable network configurations and

weightings. This sets the scene for a thorough assessment of the reliability of such networks.





Chapter 4

Network test-retest analysis

4.1 Overview

Whilst several previous studies have demonstrated structural brain networks obtained from

healthy volunteers, only a small subset of those have assessed the reliability of the resulting

networks and currently there is a lack of assessment concerning the reproducibility of these

approaches. In this chapter, we report findings from experiments in which a number of fac-

tors affecting network construction were varied and assessed using repeat scans of ten healthy

volunteers.

Firstly, independently of tractography and network construction, we assessed the test-retest

error of two alternative registration procedures (linear and nonlinear) and the overlap agree-

ment of two cortical parcellations. Using network test-retest measures, we then compared two

alternative tractography algorithms (deterministic and probabilistic), two seeding approaches

(grey and white matter), four alternative definitions of connectivity and three alternative net-

work weightings (streamline density, streamline density with length correction and a measure

of tract-averaged diffusion anisotropy). For each network configuration, we then quantified the

reliability of four graph-theoretic measures using the intraclass correlation coefficient (ICC)

and by comparing within- and between-subject average differences. Since these measures are

an essential prerequisite for more complex analyses, such as small-world measures or the iden-

tification of network hubs, their reliability is crucial to the ultimate interpretation of such net-

works. We also investigated whether false connections could be reduced by an anatomically

motivated filtering of streamlines by minimum length in white matter. In addition, we assessed

two strategies on thresholding of connections by network weight. In the course of this work,

portions of the findings in this chapter have been published previously (Buchanan et al., 2014a)

and were adapted and extended below.

65
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4.2 Participants

Ten healthy volunteers (six female) aged between 50 and 58 years underwent a dMRI protocol

on two separate occasions over an interval of either two or three days (Gorgolewski et al.,

2013)1. The subjects had a narrow age range to minimise the possible confound of increasing

age on connectivity and diffusion anisotropy values. The study was approved by the local

research ethics committee and informed consent was obtained from each subject.

4.3 Network construction

Following the methodology described in Chapter 3, various network configurations were con-

structed and subsequently assessed in a test-retest analysis. All subjects underwent the MRI

protocol, as described in Section 3.2. For each T1-weighted brain, cortical grey matter regions

were identified for both the Desikan-Killiany and Destrieux atlases. Note that the brain stem

was not used as a network node in the following experiments, which resulted in either 84 or

164 network nodes. We then applied the two alternative registration approaches for aligning

the neuroanatomical segmentations from T1-weighted space to dMRI space.

Following pre-processing and tractography, whole-brain networks were constructed as follows.

For deterministic and probabilistic tractography algorithms we employed both WM-seeding

and GM-seeding. Connections between regions were computed by identifying the streamlines

connecting each pair of grey matter ROIs. The four alternative types of streamline connectivity,

defined in Section 3.7.1, were computed for each set of streamlines subject to passing through

at least one white matter voxel. In all cases, streamlines which did not connect between ROIs

were discarded. Networks were computed for 13 different thresholds of streamline filtering by

minimum contiguous length in white matter, from 0 to 6.0 mm in increments of 0.5 mm. For

instance, a threshold of l mm discards any streamline which does not pass through at least l mm

in white matter between grey matter ROIs. The white matter regions obtained from FreeSurfer

were used as the waypoint mask.

The streamline termination constraint for curvature was empirically tested at four levels in-

dependently of network construction. From each set of resulting streamlines, SD-weighted,

SDL-weighted and FA-weighted networks were then computed. In each case, connections were

recorded in an n×n adjacency matrix, where the entry ai j denotes the connection (edge) weight

between node i and node j. The networks obtained by varying these factors described above

were then systemically assessed in terms of test-retest performance. We note that as the sam-

ple size is small (N = 10), it is difficult to determine significant differences between network

1data available to download from GigaDB: http://gigadb.org

http://gigadb.org
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configurations due to the lack of statistical power. Nevertheless, differences and trends are

discussed where appropriate.

Note that the steps for anatomical filtering of streamlines by maximum length, distance ratio,

and anatomy were not used in this study. Additionally, thresholding of the network weights

was not performed, except where described, as we wished to establish the test-retest reliability

before using arbitrary constraints to reduce spurious streamlines. However, a post-hoc analysis

of the effect of two thresholding strategies is presented in Section 4.6.9.

4.3.1 Network measures

For each connectivity matrix, four basic network measures were then computed as defined in

Section 3.8. These were the network degree (average number of connections per node), the

network strength (the average sum of weights per node), network clustering coefficient (an

average measure of local connectivity), and the characteristic path length (mean of all shortest

path lengths). Each of these four measures were computed per node for each subject. Four

global network measures were then computed by taking the mean of these nodal values.

4.3.2 Thresholding of network weights

We assessed the two thresholding strategies, as described in Section 3.8.1, and assessed the ef-

fect on nodal measures. For these experiments, thresholds were computed for the three network

weightings using the best performing tractography algorithm and seeding strategy. In the case

of the threshold by network weight, thresholds were computed at 100 intervals between 0 and

the maximum network weight. Rather than an absolute threshold on connection strength, the

threshold was computed per subject at each percentile, i.e. the weights below the kth-percentile

were discarded. For the threshold by proportion of subjects, thresholds were computed at 10

intervals between 0 and 1 (as there are 10 subjects in the cohort).

4.4 Test-retest statistics

For each network metric, two measures of agreement between sessions were computed, the

values of ICC and a comparison of the within- versus between-subject differences.
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4.4.1 The intraclass correlation coefficient

The intraclass correlation (ICC) was originally formulated for assessing multiple raters in mea-

suring the same quantity (Shrout and Fleiss, 1979); here it was used to measure the same quan-

tity over two sessions by estimating the proportion of between-subject variation relative to the

total variation. Following the notation of Shrout and Fleiss, we computed ICC(3,1) using two-

way mixed single measures using consistency of measurements between sessions, rather than

absolute agreement,

ICC(3,1) =
σ2

BS−σ2
ε

σ2
BS +σ2

ε

, (4.1)

where σ2
BS is the between-subject variance and σ2

ε is the residual variance. The difference be-

tween consistency and absolute agreement is defined in terms of how the systematic variability

due to raters (sessions) is treated.

For the unbiased formulation of the ICC used here values can range between -1 and 1. Negative

values indicate greater within-subject variance than between-subject variance. Regarding test-

retest analysis: ICC values < 0.5 reflect poor test-retest agreement; values between 0.5 and 0.8

reflect good agreement; and values ≥ 0.8 reflect excellent agreement.

4.4.2 Estimating within- and between-subject variation

For a paired set of N subject-specific measures, X1, . . . ,XN and Y1, . . . ,YN , the absolute within-

subject differences were computed,

δ
WS
i = |Xi−Yi|. (4.2)

The average between-subject differences (average differences of each subject against the others)

were computed,

δ
BS
i =

1
N−1

N

∑
j=1,i6= j

|Xi−Yj|. (4.3)

Regional within- and between-subject differences were computed per node for each of the four

network measures. Global within- and between-subject differences were computed from the

global network properties. In each case, to test that δWS < δBS, a percentile bootstrap of the

mean differences was used to compare the within- and between-subject components. The mean

differences between the within- and between-subject components,

δ =
1
N

N

∑
i
(δBS

i −δ
WS
i ), (4.4)

were computed over 5000 iterations, each time resampling with replacement from the original

samples. From the distributions over these 5000 iterations, p-values were calculated as the
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number of times that δ was larger (or smaller) than zero. Simultaneous probability coverage

and correction for multiple comparisons was obtained by adjusting the alpha level following

Wilcox (2005).

The range of δBS and δWS are dependent on the measure being assessed, but may be expressed

as a percentage of the maximum value observed in X or Y . A between-subject difference ≤
the within-subject difference indicates poor test-retest agreement, whereas a between-subject

difference > the within-subject difference reflects good test-retest agreement – the larger the

difference, δ, the stronger the agreement.

4.5 Test-retest variability at intermediate steps

We estimated the test-retest variability at three intermediate stages in the network mapping

pipeline, namely registration, segmentation, and tractography. Regional estimates of agreement

were computed from the correspondences between each pair of subject-specific ROI masks

obtained from the FreeSurfer procedure. Global estimates of agreement were computed from

correspondences between cerebral masks obtained from the segmentation procedure.

4.5.1 Segmentation agreement

By pairing each subject’s segmentations across sessions, ROIs were compared on a voxel-wise

basis in MNI-305 space2. In addition, the total ROI tissue volume was recorded. For each

region, segmentation overlap was computed by the Dice coefficient, defined as the size of

intersection of two regions divided by the mean region size, resulting in a score between 0 (no

agreement) and 1 (perfect agreement).

D(A,B) =
2|A∩B|
|A|+ |B|

. (4.5)

Dice coefficients were computed for the total grey matter, the total white matter, the 16 subcor-

tical regions and all grey matter regions obtained for the two alternative cortical atlases.

4.5.2 Registration agreement

For each subject, the T1-weighted extracted brains from both sessions were registered to the

FA volume of the first session using the procedure described in Section 2.5. Spatial alignment

between the aligned T1-weighted pair was then assessed by the voxel-to-voxel correspondence

2http://www.bic.mni.mcgill.ca/ServicesAtlases/MNI305 (Montreal Neurological Institute and Hospi-
tal, McGill University)

http://www.bic.mni.mcgill.ca/ServicesAtlases/MNI305
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using an intensity-based normalised correlation cost function suitable for intra-modal registra-

tion (Jenkinson et al., 2002). This was calculated,

NC =
∑(X .Y )√

∑X2
√

∑Y 2
, (4.6)

where X and Y are the reference and target images, each represented as a set of intensities.

For completeness, the T1-weighted extracted brains were also registered to the FA volume

of the second session by the same procedure and results averaged to reduce any bias arising

from either session. Regional estimates of between-session alignment were computed from

the normalised correlation scores within a set of ROI masks constructed from the union of

FreeSurfer segmentations from both sessions. Global estimates of between-session alignment

were computed within the grey matter, white matter and whole-brain masks.

4.5.3 Tract density agreement

In order to provide a measure of regional tract agreement over sessions prior to network con-

struction, we computed the ACM volumes recording the streamline density per voxel (Section

3.6.6). Using the transforms described above, the ACM volume from the second session was

aligned to the ACM volume of the first session (and vice versa, with results averaged) and

compared on a voxel-wise basis using normalised correlation (Equation 4.6).

4.6 Results

Before performing connectivity mapping, we assessed the test-retest properties for segmenta-

tion, registration and tractography.

4.6.1 Evaluation of neuroanatomical segmentation

FreeSurfer tissue segmentation, subcortical segmentation and cortical parcellations were com-

pared in FreeSurfer’s native MNI-305 space. Visual inspection of the segmentations for each

subject indicated that the FreeSurfer morphometric procedure provided plausible brain extrac-

tion, tissue segmentation and cortical labelling. Figure 4.1 shows an example the two cortical

segmentation atlases for one subject. Note that the grey and white tissue masks were identical

for both cortical atlases.

Figure 4.2(a) shows the mean volumes for 16 subcortical regions and the 68 cortical regions of

the Desikan-Killiany atlas with a mean volume of 5.71 cm3. We observed that the size of grey

matter regions was quite variable from region to region.
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Figure 4.1: Cortical parcellations visualised on the pial surface (56 year old male), for the

Desikan-Killiany atlas (top) and the Destrieux atlas (bottom). Colour codings are defined in the

FreeSurfer package.

The mean Dice coefficient measuring segmentation overlap between sessions was 0.77±0.02

for grey matter and 0.92±0.01 for white matter. Figure 4.2(b) shows the corresponding mean

Dice coefficient for each of these regions. Overall, the mean Dice coefficient was 0.83±0.02

for the 16 subcortical structures assessed (excluding the brain stem). The mean Dice coeffi-

cient was 0.69± 0.03 for the 68 cortical regions of the Desikan-Killiany atlas. However, the

mean Dice coefficient was 0.63± 0.04 for the 148 cortical regions of the Destrieux atlas (in

the interest of space, the individual scores for these ROIs are not shown). All cortical and

subcortical regions assessed showed at least some spatial overlap between sessions; no region

was entirely misplaced. Inspection revealed that there was little variance in the Dice over-

lap between hemispheres or across the cortical lobes, although temporal, cingulate and frontal

regions had slightly higher overlap agreement than occipital and parietal regions. The segmen-

tation of sub-cortical and medial structures was found to be most reliable, in terms of test-retest

agreement. In comparison, the segmentation overlap of the cortex was far more variable. The

two regions showing the poorest agreement were the frontal and temporal poles. In conclusion,

as the Desikan-Killiany provided better segmentation agreement than the Destrieux atlas for

our cohort, it was used for all subsequent experiments.
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Figure 4.2: a) Mean volumes of the grey matter structures obtained from FreeSurfer; b) Mean

segmentation overlap between sessions, assessed by Dice coefficient. In both cases the error

bars show the 95% inter-percentile range (N = 10).
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Figure 4.3: a) Population registration agreement for linear (FLIRT) and nonlinear (FNIRT) reg-

istration assessed by intensity-based normalised correlation; b) Population registration agree-

ment using FNIRT for subcortical and cortical nodes computed over ten ROI groupings ordered

by volume.

4.6.2 Evaluation of registration

We compared the registration test-retest performance between sessions for both linear and non-

linear registration in grey matter, white matter and grey matter ROIs. Notably, nonlinear reg-

istration (FNIRT) was found to improve alignment over linear registration (FLIRT 12-DOF

affine transform) in all brain regions as shown in Figure 4.3(a). In terms of the mean nor-

malised correlation, a reduction in registration error of 0.0025 was obtained globally, with a

0.0053 reduction in grey matter and a 0.0005 in white matter. In particular, improvements were

noted in the alignment of cortical regions. In the best cases, the mean normalised correlation

error was reduced by 0.02 or greater in bilateral rostral middle frontal regions, right caudal

middle frontal gyrus and right superior frontal gyrus. As a result, nonlinear registration was

used for all subsequent experiments. We determined that using the FA parametric map as a

registration target provided slightly better alignment than either a single T2-weighted extracted

brain volume or an average of the seven T2-weighted brain volumes.

Using nonlinear registration, spatial alignment of T1-weighted volumes was assessed between

sessions by normalised correlation with an overall score of 0.992±0.002 obtained within cere-

bral areas, 0.972±0.006 in grey matter and 0.998±0.001 in white matter.

Figure 4.3(b) shows population registration agreement using FNIRT for subcortical and cortical

nodes computed over ten ROI groupings ordered by volume. This shows both that registration

agreement for subcortical (medial) structures was typically better than cortical regions and that

small cortical regions showed poorer alignment. Figure 4.4(a) shows the regional estimates
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Figure 4.4: Nodal measures of test-retest agreement with the 95% inter-percentile range (N =

10) for: a) Registration agreement of nonlinear registration assessed by normalised correlation;

b) Streamline-density agreement assessed by normalised correlation.
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of alignment for each of the 84 nodes assessed by normalised correlation. In general, the

registration error was very low. The poorest overall alignment was observed in the temporal

poles, medial orbitofrontal and entorhinal regions, and the best alignment was observed in

sub-cortical structures such as the thalamus, pallidum and putamen.

4.6.3 Evaluation of streamline-density agreement

The streamline-density agreement was assessed between sessions in diffusion space by nor-

malised correlation with an overall score of 0.912±0.02 obtained within cerebral areas, 0.860±
0.03 in grey matter and 0.919± 0.02 in white matter. Figure 4.4(b) shows the regional esti-

mates of agreement, indicating that the regions with the poorest test-retest agreement were the

frontal poles, pericalcarine cortex and the cuneus.

4.6.4 Regional variation in reliability

Figure 4.5 shows the regional test-retest agreement for segmentation, registration and stream-

line density. These plots show the mean values from Figures 4.2(b), 4.4(a), 4.4(b) in order to

present a visualisation of possible regional variability in these measures. Broadly, all three mea-

sures of reliability showed the strongest agreement in subcortical and medial structures, and a

gradual drop off in reliability was observed for more distal cortical regions. Large subcortical

structures such as the thalamus and putamen were consistently reliable across measures. The

poorest segmentation overlap was observed in the left frontal pole. On the whole, registration

agreement was high across all nodes as shown in Figure 4.5(b), with the poorest agreement in

the temporal poles which have a small cortical volume. Streamline density was observed to

follow a similar pattern of regional variability to the other two measures although the poorest

agreement was observed in the parietal regions as shown in Figure 4.5(c).

4.6.5 Comparison of tractography configurations

We evaluated four alternative streamline termination thresholds on curvature, independently of

network construction. Thresholds were assessed at greater than 45, 60, 70 or 80 degrees. These

comparisons were performed with probabilistic tracking and white matter seeding. Visual in-

spection of the resulting streamlines (Figure 4.6) revealed that a 45 degree constraint was too

severe for computing whole-brain connections and many genuine ‘U-fibres’ were eliminated.

In terms of network connectivity, the percentage of total streamlines seeded that were sub-

sequently identified as interconnections was 9.83% for 45 degrees, 19.83% for 60 degrees,

26.18% for 70 degrees and 31.97% for 80 degrees. An empirical evaluation determined that
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(a)

(b)

(c)

Figure 4.5: Coronal, sagittal and axial views of the regional test-retest agreement for seg-

mentation, registration and streamline density. For each view, nodes are plotted at the region

centroid where node colour indicates the mean nodal value (N = 10) for: a) Segmentation over-

lap between sessions, assessed by Dice coefficient. b) Registration agreement of nonlinear

registration assessed by normalised correlation; c) Streamline-density agreement assessed by

normalised correlation.
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(a) 45◦ (b) 60◦ (c) 70◦ (d) 80◦

Figure 4.6: Streamlines remaining following four alternative streamline termination thresholds

on curvature for one subject (56 year old male).

using either 70 or 80 degrees permitted reconstruction of plausible U-fibres whilst removing

some spurious streamlines. Likewise, an empirical investigation of the streamline termination

constraint on voxel-wise FA determined that a threshold of 0.1 was necessary to ensure tracking

into the target grey matter regions.

Following network construction and using a curvature constraint of 80 degrees and no waypoint

constraint, approximately 39.7± 3.0% (mean ± standard deviation) of the total streamlines

seeded were identified as interconnections between ROIs for FACT-GM. Likewise, the inter-

connections identified using FACT-WM, FDT-GM and FDT-WM were 32.5± 4.8%, 31.8±
3.7% and 26.2±3.7%, respectively.

4.6.6 Networks

Following network construction, Figure 4.7 illustrates a subset (approximately 20%) of the

streamlines found to interconnect between the 84 nodes, i.e. streamlines that begin and ter-

minate in grey matter, for one subject. Figure 4.8 shows two representation of the resulting

network for the same subject, in this case using probabilistic tractography and WM-seeding.

Figure 4.9 shows the mean connectivity matrices and corresponding histograms of weights

generated for the three network weightings, using the networks computed by FDT with white

matter seeding for illustration. In each case the networks were produced from the same set of

streamlines. Both streamline density weightings (SD and SDL) follow a similar distribution,

which approximates a power law; tracking results in many low weighted connections but very

few strong connections. However, due to the length correction, the SDL-weighting penalised

long-range links as was evident by the down-weighting of inter-hemispheric connections as

shown in Figure 4.9(b). The FA-weighting produced a markedly different distribution of edge
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Figure 4.7: A subset of the inter-connecting streamlines for one subject (56 year old male)

constructed by probabilistic tractography using white matter seeding. Streamlines have been

filtered by curvature and length for visualisation, where colour indicates the x,y,z (red, green,

blue) direction of each streamline segment.

weights, reflecting the mean diffusion anisotropy of interconnecting streamlines. Note that

weights below 0.1 are absent due to the FA constraint applied in tracking.

Figure 4.10 shows the regional network reliability measured over different combinations of

tractography algorithm, seeding approach and network weighting. In each case, the mean ICC

was computed from the 84 nodes and plotted over 13 thresholds of streamline filtering by min-

imum length in white matter, where zero corresponds to no length constraint. Mean ICCs of

node strength were used to rate the overall nodal test-retest reliability because node strength

measures the sum of weights per node. An ICC score of 1 indicates perfect agreement between

sessions, while a score of less than 0.5 may indicate poor agreement. In all cases, when com-

paring the same algorithm and weighting, the white matter seeding strategy outperformed the

corresponding grey matter strategy. For instance, FDT-GM-SD obtained a mean ICC of 0.51,

whereas FDT-WM-SD obtained 0.62. For most cases the probabilistic methods outperformed
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Figure 4.8: Graphical representation of the structural network for one subject (56 year old male):

Left) Anatomical graph, where node size indicates node strength and edge width indicates con-

nection weight; Right) Circle graph representation of the same network for the 500 strongest

connections, where edge width indicates connection weight and node abbreviations are listed

in Appendix A.

the deterministic methods, particularly for white matter seeding. However, for FA-weighting,

the advantage of probabilistic over deterministic was less clear as shown in Figure 4.10(c). The

best performance for both tractography algorithms was obtained when using white matter seed-

ing and SD-weighting (mean ICC of 0.62 for FDT and 0.58 for FACT). Conversely, the poorest

performance was obtained using grey matter seeding and SDL-weighting as shown in Figure

4.10(b). For many cases, the minimum streamline length threshold offered little benefit. Only

in the case of SDL-weighting, as shown in Figure 4.10(a), was the mean ICC found to notably

increase with length in white matter, and for this weighting the best performance was found by

ensuring a white matter length >= 3.5 mm. This could indicate that the SDL-weighting up-

weighted short unreliable streamlines while penalising longer streamlines. Additionally, in all

cases using GM-seeding, except FACT-GM-SDL, a waypoint threshold > 0 mm improved per-

formance over no waypoint threshold. Overall, the best tractography configuration was found

to be the FDT algorithm with white matter seeding and SD-weighting, resulting in a mean ICC

of 0.62, as shown in Figure 4.10(a). This configuration was then chosen to assess network

properties in the remainder of this chapter, except where specified otherwise.

Figure 4.11 shows the mean node strength reliability as assessed by ICC for the four definitions

of endpoint connectivity as described in Section 3.7.1. In each case probabilistic tractography

and WM-seeding were used. Overall, the four definitions of connectivity provided similar
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Figure 4.9: Top row: 84×84 mean connectivity matrices of inter-region connections averaged

across all subjects (N=20) for the three network weightings and generated from the same set

of streamlines: (a) streamline density; (b) streamline density with streamline length correction,

(c) tract-averaged FA. Note, that both SD and SDL-weighted matrices are scaled between zero

and one and (a) and (b) are log scaled. In each case, the two large rectangular patterns on

the diagonal correspond to the left and right hemispheres and the node ordering is the same

as Figures 4.13–4.15. Bottom row: the corresponding histograms of the connection weights for

each of the three network weightings.
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Figure 4.10: Mean ICC values measuring test-retest reliability of node strength over thirteen

thresholds of streamline filtering by white matter waypoint length for each tractography algo-

rithm, seeding type and network weighting. 95% confidence intervals of the mean were es-

timated by resampling with replacement 5000 times from the 84 nodes and recomputing the

mean and taking the 2.5 and 97.5 percentiles of this distribution.
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Figure 4.11: Comparison of four different connectivity configurations measuring the mean ICC

for node strength using probabilistic tractography and WM-seeding. 95% confidence intervals

of the mean were estimated by resampling with replacement 5000 times from the 84 nodes and

recomputing the mean and taking the 2.5 and 97.5 percentiles of this distribution.

test-retest performance. However, the connectivity using ‘first’ ROI encountered was found to

perform marginally better in each case, particularly for SD-weighting. In contrast, the con-

nectivity measuring all potential ROIs as connected (complete) provided the poorest test-retest

results in each case. As a result, ‘first’ connectivity was used for all subsequent experiments.

Figure 4.12 shows the relationship between network properties and tracking iterations per seed

point (or number of streamlines generated) for this configuration. Figure 4.12(a) shows the

population means of the four network measures. The mean network degree increased with the

number of iterations, whereas the mean clustering coefficient and path length showed an inverse

relationship with the number of iterations. The mean value of network strength was found to

be variable when measured over few iterations but stabilised after approximately 40 iterations.

Figure 4.12(b) shows the corresponding mean nodal ICCs for each network measure. The mean

ICC of network strength settled to around 0.62 after approximately 10 iterations, although the

other three properties showed gradual increases in reliability up to 100 iterations.

4.6.6.1 Network interpretation

Figure 4.13 shows the regionally computed mean values for the four network measures using

FDT with WM-seeding, SD-weighting and a waypoint threshold set to 0.5mm. The absolute

values of node strength, path length and clustering coefficient are not especially meaningful

as they are dependent on the weighting scheme used, tractography configuration and choice

of nodes. However, the value of one node property relative to another may offer insight into

network organisation. The 95% inter-percentile range suggests that the patterns of connectiv-

ity were fairly similar across subjects. Sub-cortical structures, such as the thalamus, putamen,
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Figure 4.12: The relationship between network properties and tracking iterations per seed point

using FDT with white matter seeding, streamline density weighting and waypoint threshold set

to 0.5 mm: (a) The population means of the four network measures; (b) The corresponding

mean regional ICCs for each network measure.

and pallidum tend to be both highly interconnected and have strong total connection weight-

ings. The entorhinal cortex, pars orbitalis and precentral gyrus show a high clustering coef-

ficient, suggesting their direct nodal neighbours are also strongly inter-connected. However,

the clustering coefficients were very variable across the cohort. The overall network degree

was 31.5± 15.3, indicating that on average, each node is directly linked to nearly 32/84 of

the other nodes. Overall network strength was 0.72± 0.7 reflecting the average sum of con-

nection weights (normalised streamline density) per node. Network characteristic path length

was 1.54± 0.2 reflecting the average weighted path length between all pairs of nodes. Fi-

nally, network clustering coefficient was 0.006± 0.003, indicating that on average a node’s

direct neighbours have a mean connection weighting of approximately 0.6% of the maximum

weight.

4.6.7 Global network reliability

Table 4.1 shows a summary of the global test-retest analysis for FDT and white matter seed-

ing (other tractography configurations are not reported) for each of the three network weight-

ings. In each case, networks were constructed with the waypoint threshold set to 0.5 mm as

this was closest to the best performance for all three weightings (Figure 4.10). All global

network properties show good within-subject agreement with all ICCs > 0.59. In all cases,

the within-subject differences (δWS) were smaller than the between-subject differences (δBS).

For SD-weighting, ICCs were between 0.62 and 0.76, within-subject differences 3.2–11.9%,
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Figure 4.13: Nodal values computed from population (N=20) means, from top-to-bottom: node

degree (k), node strength (w) , path length (l) and clustering coefficient (c) as defined in Section

3.8. Error bars show the 95% inter-percentile range.
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FDT, WM-seeding, SD-weighted

ICC mean δWS % mean δBS % p-value

network degree 0.66 8.22 (8.3) 14.10 (11.0) 0.110

network strength 0.75 11.93 (9.9) 19.95 (14.4) 0.066

characteristic path length 0.62 3.22 (3.6) 5.83 (4.8) 0.099

network clustering coefficient 0.76 6.37 (6.2) 12.56 (9.3) 0.018

FDT, WM-seeding, SDL-weighted

ICC mean δWS % mean δBS % p-value

network degree 0.66 8.22 (8.3) 14.10 (11.0) 0.110

network strength 0.76 8.86 (6.1) 15.09 (10.5) 0.025
characteristic path length 0.59 3.06 (3.3) 5.51 (4.5) 0.097

network clustering coefficient 0.71 8.35 (7.2) 16.18 (9.6) 0.006

FDT, WM-seeding, FA-weighted

ICC mean δWS % mean δBS % p-value

network degree 0.66 8.22 (8.3) 14.10 (11.0) 0.110

network strength 0.67 9.82 (10.5) 17.54 (13.9) 0.070

characteristic path length 0.64 4.46 (4.8) 8.25 (7.1) 0.060

network clustering coefficient 0.69 4.77 (5.3) 8.87 (8.5) 0.073

Table 4.1: Summary of the global test-retest analysis for the three types of network weight-

ing using FDT and white matter seeding, showing: ICC, mean within-subject differences (δWS),

mean between-subject differences (δBS). The differences are expressed as a percentage, brack-

eting indicates the standard deviation and emboldening indicates significance (p < 0.05).
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FDT, WM-seeding, SD-weighted

mean ICC mean δWS % mean δBS %

node degree 0.50 (0.3) 16.35 (7.0) 23.25 (8.1)

node strength 0.62 (0.2) 24.18 (8.3) 35.69 (11.0)

path length 0.53 (0.2) 5.22 (1.5) 8.08 (2.0)

clustering coefficient 0.46 (0.3) 21.82 (7.4) 28.77 (8.8)

FDT, WM-seeding, SDL-weighted

mean ICC mean δWS % mean δBS %

node degree 0.50 (0.3) 16.35 (7.0) 23.25 (8.1)

node strength 0.58 (0.2) 21.85 (7.7) 31.11 (10.5)

path length 0.51 (0.3) 4.91 (1.5) 7.57 (2.0)

clustering coefficient 0.45 (0.3) 22.92 (8.8) 31.36 (9.8)

FDT, WM-seeding, FA-weighted

mean ICC mean δWS % mean δBS %

node degree 0.50 (0.3) 16.35 (7.0) 23.25 (8.1)

node strength 0.52 (0.3) 19.02 (8.0) 27.28 (9.2)

path length 0.56 (0.2) 6.35 (1.9) 10.02 (2.4)

clustering coefficient 0.51 (0.2) 8.21 (2.2) 12.38 (2.8)

Table 4.2: Summary of the regional (nodal) test-retest analysis for all 84 nodes for the three

types of network weighting using FDT and white matter seeding, showing: mean ICC, mean

within-subject differences (δWS) and mean between-subject differences (δBS). The differences

are expressed as a percentage and bracketing indicates the standard deviation.

between-subject differences 5.8–20% and the corresponding p-values between 0.018 and 0.11.

For SDL-weighting, ICCs were between 0.59 and 0.76, within-subject differences 3.1–8.9%,

between-subject differences 5.5–16.2% and the corresponding p-values between 0.006 and

0.11. For FA-weighting, ICCs were between 0.64 and 0.69, within-subject differences 4.5–

9.8%, between-subject differences 8.3–17.5% and the corresponding p-values between 0.06

and 0.11. Overall, the global test-retest properties were broadly similar over the three weight-

ings, although SDL-weighting obtained marginally better performance than the other weight-

ings. For network strength and clustering coefficient the SDL-weighting provided the most

significant differences, whereas for characteristic path length, the FA-weighting came closest

to significance. In each case the results for network degree were identical because the same set

of streamlines was used.
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4.6.8 Regional network reliability

Table 4.2 shows a summary of the regional test-retest analysis. For SD-weighting, mean

ICCs were between 0.46 and 0.62, mean within-subject differences 5.2–24.2%, mean between-

subject differences 8.1–35.7%. For SDL-weighting, mean ICCs were between 0.45 and 0.58,

mean within-subject differences 4.9–22.9% and mean between-subject differences 7.6–31.4%.

For FA-weighting, mean ICCs were between 0.50 and 0.56, mean within-subject differences

6.4–19.0% and mean between-subject differences 10.0–27.3%. For all four measures, SD-

weighting obtained marginally better regional test-retest performance than SDL-weighting in

terms of mean ICCs. However, in the case of path length and clustering coefficient the FA-

weighting obtained better performance than SD-weighting. Again, the results for node degree

were identical across weightings as the same set of streamlines was used.

Figure 4.14 shows the regional ICCs for each of the 84 nodes, again using FDT with white

matter seeding, SD-weighting and a waypoint threshold set to 0.5mm. Only 22.6% (19/84)

of nodes obtained ICCs ≥ 0.5 across all four measures. 77.4% (65/84) of nodes showed poor

within-subject agreement with an ICC < 0.5 across one or more measures. Furthermore, 10.7%

(9/84) of nodes showed a negative ICC across one or more measures. For the unbiased formu-

lation of the ICC used here, estimates can be negative for greater within-subject variance than

between-subject variance. These nine nodes were left/right amygdala, left/right pallidum, left

caudal middle frontal, left superior frontal, right inferior temporal, right middle frontal, right

lateral orbitofrontal and right superior parietal.

Figure 4.15 shows the corresponding differences between the within- and between-subject

components, δBS− δWS. Although, for 83.3% (70/84) of nodes the within-subject differences

were smaller than the between-subject differences across all four measures, on average less

than 1/8 nodes show that the differences were significant (p < 0.05) for our sample. Nega-

tive differences occurred for 17.9% (15/84) of nodes in at least one measure, indicating that

the within-subject difference outweighed the estimated between-subject difference. These 15

nodes were left pallidum, left hippocampus, left amygdala, left caudal anterior cingulate, right

entorhinal, right fusiform, left lateral occipital, right lateral orbitofrontal, right middle frontal,

left/right pars orbitalis, right pericalcarine, right paracentral, right transverse temporal and right

temporal pole.

Results revealed a small variation in test-retest scores between hemispheres. For example, for

nodes within the left hemisphere the mean within-subject difference (for node strength) was

22.51%, the mean between-subject difference was 34.82% and the mean ICC was 0.66. For

nodes with the right hemisphere the mean within-subject difference was 25.83%, the mean

between-subject was 36.56% and the mean ICC was 0.59. However, testing the mean differ-
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Figure 4.14: Nodal ICC values with 95% confidence intervals (N=10) from top-to-bottom: node

degree, node strength, path length and clustering coefficient.
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Figure 4.15: Mean nodal differences (δBS− δWS) with 95% confidence intervals of the mean

estimated by bootstrap resampling (N=10), from top-to-bottom: node degree, node strength,

path length and clustering coefficient.
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ences δ, with a one-way ANOVA suggested that these differences were not significant for any

of the four node measures.

4.6.8.1 Variation between cortical and sub-cortical nodes

Our analysis revealed a variation in regional test-retest scores between cortical and sub-cortical

nodes. For cortical nodes the mean within-subject difference (of node strength) was 24.96%,

the mean between-subject difference was 37.16% and the mean ICC was 0.65. However, for

sub-cortical nodes the mean within-subject difference was 20.82%, the mean between-subject

was 29.45% and the mean ICC was 0.50. Subsequently, we compared the 84× 84 whole-

brain networks with 68× 68 networks constructed from cortico-cortical connections only. A

percentile bootstrap contrast, which compared the mean within- versus between-subject differ-

ences (δ) between the whole-brain and cortico-cortical networks, suggested that there were no

significant differences for any of the four node measures. This indicates that for our sample,

the inclusion of sub-cortical connections does not reduce test-retest reliability.

4.6.9 Thresholding of network weights

Figure 4.16 shows thresholding by connection weight. Figure 4.17 shows thresholding of con-

nections by proportion of subjects in which they were observed to occur. Figure 4.16(a) and

4.17(a) show how the mean network properties vary over a range of thresholds. For instance,

node degree and node strength declines with the threshold level. Figure 4.16(b) and 4.17(b)

show how corresponding mean ICCs vary over the same range of thresholds. For these experi-

ments all three network weightings were again assessed as thresholding may effect each differ-

ently. Node degree was the same across the network weightings as the same set of streamlines

was used.

Note that, for Figure 4.16(a) no value for path length was shown after more than approxi-

mately 45% of the network weights were discarded. This occurred because in one subject, this

threshold level resulted in a disconnected network, i.e. not all nodes are connected and the

path length becomes infinite. Arguably, both thresholding strategies showed little benefit in

improving nodal reliability, particularly for node degree and node strength. However, increases

in nodal ICC were observed for path length and clustering coefficient.
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Figure 4.16: Relationship between network properties (A), mean ICC (B) over a range of thresh-

old on connection weights.
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Figure 4.17: Relationship between network properties (A), mean ICC (B) over a range of thresh-

olds by the proportion of subjects for which a connection occurs.
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4.7 Discussion

4.7.1 Relationship to previous work

Preceding our work, several studies have assessed aspects of network reliability using repeat

scans of healthy human volunteers. Hagmann et al. (2008) assessed structural networks ob-

tained from DSI, while Vaessen et al. (2010) assessed reproducibility over different sets of dif-

fusion gradient directions using DTI. Bassett et al. (2010) compared reliability in both DTI and

DSI, Zalesky et al. (2010b) investigated the effect of network resolution using DTI and high-

angular resolution, and Cammoun et al. (2011) investigated the effect of network resolution

using DSI. Finally, Cheng et al. (2012a) assessed test-retest reliability using DTI with focus on

the differences between binary and weighted networks. These studies have addressed network

reliability in different ways. Hagmann et al. found a within-subject network correlation of 0.78

for a single subject, and a mean between-subject correlation of 0.65 (N=5). Similarly, Cam-

moun et al. compared matrices directly by Pearson’s correlation coefficient and found within-

subject correlations ranging from 0.874 to 0.976 (N=5) and between-subject correlations of

between 0.724 to 0.958 (N=20) across five different network resolutions. Vaessen et al. found

within-subject coefficients of variation (CV) < 3.8% and ICCs between 0 and 0.94 for node

degree, path length and clustering coefficient (N=6). Bassett et al. found within-subject CVs

< 5% and ICCs > 0.72 (N=7). Cheng et al. found good test-retest agreement in both global and

regional network properties (N=44). In addition, the authors concluded that binary networks

and weighted networks of the same subjects have different organisational properties and that

weighted networks may be more appropriate (Cheng et al., 2012a). Though it is not straightfor-

ward to compare between assays, these studies indicate that, globally, same-subject networks

differ between scanning sessions and acquisition types, yet the between-subject variation is

typically greater than the within-subject variation.

4.7.2 Network reliability

We obtained similar results in assessing global network properties. Using probabilistic tractog-

raphy and white matter seeding, the global within-subject differences (< 11.9%) were smaller

than the global between-subject differences with p-values at either p < 0.05 or trend level and

ICCs > 0.59 ( Table 4.1). These findings indicate that global network properties can be esti-

mated reliably from session to session for all three types of network weighting tested. Overall,

the network weighting recording streamline density with streamline length correction (Hag-

mann et al., 2008) showed marginally better global test-retest performance that the other two

weightings.
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The comparison of tractography algorithms, seeding approaches and network weightings (Fig-

ure 4.10) offers some insights into network reliability. Firstly, in all cases white matter seeding

produced networks with better test-retest reliability than grey matter seeding, in terms of the

mean ICC measuring node strength. We note that these results may be partly biased due to

the larger sample obtained with white matter seeding, as our setup involves seeding from all

voxels in either grey or white matter, and there were approximately 15% more seed points in

white matter than grey, and in areas of higher diffusion anisotropy. Nevertheless, we believe

some grey matter seeding error may arise because all grey matter voxels were included even

those unlikely to be involved in interfacing with white matter, potentially resulting in a greater

proportion of spurious tracts. Secondly, overall, the probabilistic algorithm produced better

test-retest performance than the deterministic method. This was perhaps due to the limited

sample of possible streamlines produced by the deterministic method. The deterministic ap-

proach estimates a best fit of the diffusion tensor model at each voxel, whereas the probabilistic

approach estimates a distribution. Concerning probabilistic tractography, the fibre model and

the number of iterations are important considerations. The general recommendation is to use

1000 or more iterations per seed point. In this study, we applied 100 streamlines per seed

voxel, equating to approximately 6 million streamlines per subject. Unfortunately, networks

constructed with thousands of MCMC iterations are often impractical due to the computational

cost involved. However, experiments using more than 100 iterations may be required to test

this point.

In a recent study, Parker et al. (2014) compared network connectivity using a number of alterna-

tive segmentation, registration, fibre orientation estimation and tractography approaches from

the same dMRI data (N = 28). Crucially, by comparing alternative pipelines, the authors found

high agreement in the network similarity. And they identified replication of core connections

and highly connected nodes across different network threshold and node configurations. This

hints that current techniques are capable of providing a useful and representative estimation of

white matter organisation.

To our knowledge, results of nodal reliability have rarely been reported in previous test-retest

studies, even though reliability of individual nodes is crucial to the overall interpretation of

networks. For white matter seeding, the regional findings (Figure 4.10) showed that the white

matter waypoint constraints were largely ineffective in improving test-retest reliability, except

in the case of SDL-weighting. However, for grey matter seeding the waypoint constraints

improved the regional network reliability for all three types of weighting in comparison to

unrestricted connectivity mapping. This is because grey matter seeding without any streamline

filtering can produce streamlines which connect directly to a neighbouring grey matter ROI

without apparently passing through any white matter. Due to partial volume effects some
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of these connections may be genuine, particularly at the grey-white matter interface, but this

is challenging to validate at dMRI resolution and such connections may often be spurious.

However, we believe a constraint on white matter length is a more valid method of streamline

filtering than thresholding purely by length. Waypoint constraints use prior knowledge of the

white matter location to filter streamlines, whereas arbitrary length thresholds may remove

genuine streamlines regardless of whether they pass through white matter. Our results indicated

that constraining streamlines to pass through at least one white matter voxel was enough to

improve network reliability.

An important consideration when quantifying interconnections is the normalisation applied

to correct streamline counts for effects due to differences in grey and/or white matter vol-

umes. However, some researchers have suggested that volume correction (e.g. SD and SDL-

weightings) may overcompensate for volume-driven effects on streamline counts (Van Den

Heuvel and Sporns, 2011). Streamline density weightings may down-weight the connection

strengths for subjects with larger brains, potentially skewing the results of a group-wise anal-

ysis. It is not clear how such effects may be counteracted to allow representative comparison

of connectivity between individuals. Alternatively, instead of streamline density it is possible

to record some measure of tissue microstructure, such as diffusion anisotropy, averaged along

the length of each tract (Iturria-Medina et al., 2007; Robinson et al., 2010). Such weightings

somewhat circumvent the need for correction, as the weights reflect the underlying diffusion

properties and are thus less affected by differences in tissue volume. Although we found that

FA-weighting provided poorer test-retest performance than the SD-weighting (for most of the

aspects assessed), it is possible that network weights based on properties of tissue microstruc-

ture may be more appropriate for group-wise analysis.

Some researchers have pointed out a bias arising from the tracking procedure, meaning that

the number of fibres identified between a pair of regions decreases as a function of the distance

(Zalesky and Fornito, 2009). This is due to the greater number of propagation steps and hence

accumulated error associated with longer streamlines. An attempt to correct such biases may be

made by a normalisation on streamline length. We compared networks with and without length

correction (SDL and SD-weighting) finding that in almost all cases, whether seeding from grey

or white matter, that the uncorrected weighting (SD) produced networks with better regional

reliability (Figure 4.10), although SDL obtained marginally superior global reliability ( Table

4.1). This suggests that for our data, the length correction overcompensates for accumulated

errors in longer streamlines. Cheng et al. (2012a) made similar findings, suggesting that the

length correction may not be necessary because the success rate for inter-region tracks was

lower with longer fibres.

Concerning thresholding of network weights, it is problematic to ensure that an arbitrary thresh-
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old removes spurious connections while retaining genuine patterns of connectivity. Addition-

ally, applying the same threshold to multiple connectivity matrices is likely to results in differ-

ent levels of sparsity, whereas matching sparsity across subjects is also problematic (Zalesky

et al., 2010a). Thresholding has previously been reported to have a dramatic effect on the

amount of false positive and false negative connections and the resulting measures of connec-

tivity (van Wijk et al., 2010; de Reus and van den Heuvel, 2013). Trials comparing a range of

suprathresholds on the connection weights indicated that some thresholds offered improvement

in the overall test-retest reliability of connection (edge) statistics but marginal improvements

in nodal and global properties. On the other hand, severe thresholds can be destructive. For

instance, Figure 4.16(a) showed that thresholding causes some nodes to become disconnected

(infinite path length). Clearly, such a brain network is anatomically implausible and no brain

region could be entirely disconnected for our cohort. This highlights some serious concerns

with thresholding approaches. Arguably, rather than using arbitrary thresholds it may be better

to pursue anatomical constraints in order to reduce spurious connections, such as the FA, cur-

vature and waypoint thresholds used in tractography. However, in the case of noisy data, some

form of thresholding may still be necessary but should be applied with caution.

Overall, it is difficult to avoid the conclusion that our findings highlight some concerns about

the regional reliability of dMRI networks, suggesting that the connections to some nodes were

computed unreliably from session to session (Table 4.2, Figure 4.14, 4.15). On average, only

one in eight nodes show a significant difference in between- and within-subject variation for

our sample. In addition, only 22.6% (19/84) nodes have ICCs ≥ 0.5 across all four measures.

4.7.3 Sources of test-retest variation

Some test-retest variation may be due to scanner noise and inhomogeneities between sessions

and some may be due to systematic variation in processing (Hagmann et al., 2010a; Van Essen

and Ugurbil, 2012). Evidently, many intermediate steps are involved in generating structural

networks from dMRI data. The variability at each step contributes to the variability in the

following stage and in the resulting measures of connectivity. In particular, following our ap-

proach, network properties are dependent on reliable registration, node segmentation, diffusion

processing and tractography.

Considering the regional test-retest agreement for segmentation, registration and streamline

density (Figure 4.5), broadly, all three measures of reliability showed the strongest agreement

in subcortical and medial structures. Overall, a gradual drop off in reliability was observed

for more distal cortical regions. Segmentation and registration may perform more poorly in

frontal and temporal regions because of EPI susceptibility artefacts and, to some extent, par-
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tial voluming effects. Therefore, achieving accurate registration may be more problematic in

these cortical regions in comparison to medial regions. The poorest segmentation overlap was

observed in the left frontal pole, as shown in Figure 4.5(a), which was observed to be the one

of the smallest and outermost nodes. The Desikan-Killiany atlas has known problems in seg-

menting the frontal pole because of its poorly defined cortical boundary (Desikan et al., 2006).

Streamline density, which is derived from tractography, would be expected to be affected by er-

rors in nodal segmentation and registration. Indeed, streamline density was observed to follow

a similar pattern of regional variability to registration and segmentation, but with the poorest

agreement in parietal regions as shown in Figure 4.5(c).

In our case, the regional network properties are reliant on the FreeSurfer morphometric proce-

dure. It should be noted that the task of automated cortical labelling is extremely challenging.

These methods have been demonstrated to show good test-retest reliability across scanner man-

ufacturers and across field strengths (Han et al., 2006; Wonderlick et al., 2009; Reuter et al.,

2012), although other studies have shown discrepancies in test-retest reliability (Morey et al.,

2010; Gronenschild et al., 2012). Note that the volumetric agreement by ICC in these compar-

isons takes no account of spatial overlap and so ICC may not be a very appropriate assessment

of segmentation. In this work, segmentation was directly assessed by voxel-wise correspon-

dence using Dice overlap, which reports spatial agreement rather than volumetric agreement.

However, overlap measures can be adversely affected by registration error between sessions.

A recent study of a large cohort of 189 elderly subjects found that reliability of cortical and

subcortical parameters was generally high (cortical: ICCs > 0.87, subcortical: ICCs > 0.95),

but the authors suggest that fairly large cohorts are required to detect a 10% change between

groups in regional cortical volumes (Liem et al., 2014).

An appropriate definition of network nodes is essential but far from trivial (Hagmann et al.,

2010a; Zalesky et al., 2010b). Ideally, the node definition should be chosen such that it allows

complete and unambiguous segmentation of the underlying tracts. A network formed from too

few large nodes may fail to capture the true connectivity between regions. However, a network

formed from too many small nodes may be influenced by systematic errors and noise, leading

to spurious findings. Ideally, we wish to obtain a network resolution where the measurement

of genuine structural differences is larger than the noise measurements. We chose the Desikan-

Killiany atlas for our analysis as using larger and fewer nodes may minimise the effects of

image noise and systematic error. We also assessed a 164 node parcellation (Destrieux et al.,

2010) but segmentation was found to be poorer than with the 84 node configuration, in terms

of test-retest agreement, and therefore not pursued. Given the resolution used in this study

(84 nodes), our findings suggest that the measurement noise may degrade some of the genuine

patterns of connectivity for several nodes. However, networks of 50–100 nodes are typical for
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Figure 4.18: Coronal and sagittal views of anatomically plausible streamlines (red) and implau-

sible streamlines (yellow). Implausible streamlines falsely connect from the left superior frontal

gyrus to bilateral subcortical regions.

current connectome studies.

Many network studies have computed cortico-cortical connections only, even though, sub-

cortical structures have an essential role in brain wiring. For instance, the thalamus is highly

connected to many cortical regions (Behrens et al., 2003a). Therefore, we found it impor-

tant to include sub-cortical structures in our analysis. Although we found a variation in the

nodal properties between cortical and sub-cortical regions, the differences in reliability be-

tween whole-brain and cortico-cortical networks were not significant (Section 4.6.8.1).

Additionally, some error may reflect tractography issues in estimating the underlying axonal

tracts. This may due to both ROI segmentation errors affecting seeding and methodological

issues in streamline construction. Validation of tractography has been performed with good

agreement with the underlying neuronal connections in the porcine and macaque brain (Parker

et al., 2002; Dyrby et al., 2007), and with good agreement in a realistic artificial phantom

(Fillard et al., 2011). However, tractography is know to be strongly affected by measurement

noise resulting in both false positive and false negative connections (Jbabdi and Johansen-Berg,

2011; Zalesky and Fornito, 2009). Figure 4.18 illustrates a subset of false streamlines, which

pass through the corpus callosum, obtained with probabilistic tractography. Bilateral cortical-

subcortical connections are considered to be anatomically implausible, with the vast majority

of callosal tracts believed to connect exclusively between cortical regions (Gazzaniga, 1998;

Funnell et al., 2000). Such errors arise in streamline tracking due to limitations of tractography

and the problems with crossing, branching and kissing fibres. Streamlines like those illustrated

were not uncommon and this highlights serious limitations of our data and methods. The

uncertainty in fibre directions for noisy measurements may also be a factor in the poor test-

retest results. Fillard et al. (2011) suggested that for medium or low signal-to-noise datasets,

an appropriate prior on the spatial smoothness of either the diffusion model or the fibres is
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recommended for correct modelling. Refer to Yo et al. (2009) for a comparison of various

tractography algorithms in a structural connectome context (although not using test-retest data).

4.7.4 Limitations of study

Analysis of reliability is challenging because results depend on both the variables analysed

and the metric used. Here we used four dependent variables: node degree, node strength, path

length and clustering coefficient. There are of course many other ways to characterise networks

but these measures are the basis of graph-theoretic analyses. It is worth noting that in this study

agreement was based on either global or nodal measures, which are themselves a function

of elements of the adjacency matrix. It is also possible to directly assess every (non-zero)

element of the adjacency matrix (see Zalesky et al. 2010a), which may offer further insight

into network reliability at the level of individual connections. In terms of metrics, we relied

on both the within- versus between-subject differences and the ICC. One issue with the ICC is

that large samples may be required to estimate scores to acceptable precision. Shoukri et al.

(2004) determined that for two repeated measures, in order to estimate a minimum acceptable

ICC score of 0.8 with 95% confidence intervals of width 0.2, then 52 subjects are required

(see Table 3 Shoukri et al. 2004). Similarly, to estimate a minimum acceptable ICC score of

0.6 with 95% confidence intervals of width 0.2, then 158 subjects are required. Clearly, such

samples may be unrealistic in the case of MRI, and to date, no test-retest study has assessed

a sample of this size, although Cheng et al. (2012a) used 44 subjects. Therefore, the studies

relying on ICC (and also Pearson’s correlation coefficient, which itself is a biased version of

ICC because it assumes independent variances) have biased estimates. We can thus recommend

that future dMRI network studies use a sample of more than 50 subjects. Furthermore, as well

as ICCs, we have also quantified test-retest performance by comparing the within-subject to

the mean between-subject differences. For a small sample the measurement error may be quite

high, but bootstrap estimates are less affected by sample size. For most nodes the within-

subject differences were smaller than between-subject differences yet most differences were

not found to be significant, which can also reflect a lack of power. Nevertheless, our analysis

provides insight into whether the genuine patterns of connectivity can be identified despite

noisy measurements.

4.7.5 Conclusions

This chapter presented a test-retest analysis of structural brain networks obtained from MRI by

comparing various factors affecting network construction. Our key findings were: 1) Proba-

bilistic tractography was found to perform better than a deterministic method; 2) Performance
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was improved when seeding from white matter, rather than grey. 3) Thresholding of network

weights must be applied with caution in order to remove spurious connections while retaining

genuine patterns of connectivity. We recommend that future dMRI network studies use large

samples of ideally more than 50 subjects, in order to accurately estimate genuine between-

subject differences above noise measurements. Overall, our results suggest that current con-

nectome mapping techniques (at 1.5 T) are adequate for reliably measuring global network

measures. However, regional network measures may not be reliable, leading to concerns about

the validity of studies based on such measures particularly with small sample sizes.





Chapter 5

Brain networks in amyotrophic lateral

sclerosis

5.1 Overview

Our method of network construction was used in an analysis of brain connectivity in a group of

30 amyotrophic lateral sclerosis (ALS) patients when compared with a group of age-matched

healthy controls. For each subject, we identified 85 network nodes (including the brain stem)

and whole-brain networks were constructed using an anatomically motivated white matter way-

point constraint and a weighting reflecting tract-averaged fractional anisotropy. An established

statistical technique (NBS) was then used, without a priori selected regions, to identify a sub-

network (10 nodes and 12 bidirectional connections) of reduced connectivity in the ALS group

compared with the controls (p = 0.02, corrected). These findings suggest that degeneration in

ALS is strongly linked to the motor cortex. Reduced FA in three of the impaired network con-

nections, which involved fibres of the corticospinal tract, was found to correlate with rate of dis-

ease progression. In addition, we used a novel network-tract comparison, which revealed that

the connections involved in the affected network had a strong correspondence (mean overlap

of 86.2%) with impaired white matter tracts identified using a standard voxel-based methods

(TBSS).

This chapter begins with a brief overview of ALS, focussing on the reported changes in brain

structure and connectivity associated with the disease. This is followed by a description of the

participants, methods and the analyses performed. Results are then presented and, finally, the

findings and limitations are discussed. In the course of this work, portions of the findings in

this chapter have been published previously (Buchanan et al., 2014b) and were adapted and

extended below.

101
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5.2 Amyotrophic lateral sclerosis

ALS, the most common form of motor neurone disease, is a devastating adult-onset neurode-

generative disorder (Rowland and Shneider, 2001). The disease is characterised by chronic and

usually rapid degeneration of the upper motor neurons of the motor cortex and the lower motor

neurons of the brain stem and spinal cord. In sufferers, this leads to loss of motor function,

progressive weakness, muscle atrophy and eventually death, often by respiratory failure. The

median time from onset to death is just 39 months. However, for most patients, their cogni-

tive function remains largely intact. It is though that the disease process causes Wallerian-like

axonal degeneration (Bruijn et al., 2004), meaning that the axonal transport is gradually dis-

rupted and the distal portion of the axon effectively becomes separated from the cell body.

Eventually the axonal skeleton disintegrates, and the axonal membrane breaks apart, followed

by degradation of the myelin sheath.

Approximately 5–15% sufferers are also afflicted with frontotemporal dementia (FTD) (Geser

et al., 2009) and a proportion of non-demented patients present with specific cognitive impair-

ment (Phukan et al., 2012), suggesting that the disease also affects extra-motor areas. Though

the aetiology of ALS is not well understood, MRI has proved useful in probing the white matter

degeneration attributed to ALS.

5.2.1 Previous MRI studies

Previous studies using dMRI have identified reduced white matter integrity in the corticospinal

tract (Abe et al., 2004; Agosta et al., 2010; Blain et al., 2011; Ciccarelli et al., 2006; Douaud

et al., 2011; van der Graaff et al., 2011; Sarro et al., 2011; Verstraete et al., 2010), the corpus

callosum (Douaud et al., 2011; Sarro et al., 2011; Verstraete et al., 2010) and uncinate fasci-

culus (Sarro et al., 2011; Sato et al., 2010). Functional MRI studies have also identified ab-

normalities in extra-motor brain areas, including prefrontal regions (Tsermentseli et al., 2012;

van der Graaff et al., 2009). And voxel-based morphometry analyses have found evidence of

reduced grey matter volumes in the superior, medial and mid frontal gyri and anterior cingulate

(Ellis et al., 2001; Kassubek et al., 2005) and reduced white matter volume and integrity in

frontotemporal regions (Abrahams et al., 2005; Kassubek et al., 2005). Such findings have led

to suggestions that ALS may be a progressive multi-system disorder (Cirillo et al., 2012; Geser

et al., 2008; Rose et al., 2012).

However, many previous studies have relied on ROI approaches, which are typically con-

strained to a limited number of major white matter pathways or cortical areas. As the brain

is a strongly interconnected system the degeneration of motor neurons may result in complex
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and widespread changes. It is possible that whole-brain network analysis of the structural con-

nectivity between brain regions (Sporns, 2011b), involving many hundreds of potential con-

nections, may help to localise the degeneration in connectivity associated with ALS, especially

for secondary or more widespread impairments in connectivity.

Whole-brain network analysis and statistical techniques, such as NBS (Zalesky et al., 2010a),

can be used to identify differences in connectivity in case-control studies. NBS has previously

been demonstrated in schizophrenia (Zalesky et al., 2010a, 2011) and in a similar ALS cohort

(Verstraete et al., 2011, 2013). We investigated whether whole-brain network analysis, without

a priori selected regions, can provide further insights into the white matter changes associated

with the disease. This approach may provide supporting evidence of the localised impairments

in motor areas surrounding the corticospinal tract and the corpus callosum, but it also has a

capacity to identify secondary changes in connectivity in extra-motor areas.

In addition, we compared the results from a conventional TBSS approach (Smith et al., 2006)

with the results from a network analysis of the same dMRI data. The aims of this chapter are as

follows: 1) apply whole-brain network analysis with strong constraints on anatomically plau-

sibility in order to identify white matter impairments due to ALS; 2) assess the agreement of

network-based analysis with a conventional TBSS analysis; 3) assess any association between

disease state and the findings from network analysis.

5.3 Participants

30 ALS patients and 30 age- and education-matched healthy controls were recruited and un-

derwent an MRI protocol (as described in Section 3.2) and cognitive tests. The study was

approved by the National Health Service Scotland Research Ethics Committee and the Depart-

ment of Psychology, University of Edinburgh and informed consent was obtained from each

subject.

The patient group were recruited from regional ALS services at the following sites through-

out Scotland: Western General Hospital, Edinburgh; Southern General Hospital, Glasgow; and

Ninewells Hospital, Dundee. All had clinical and electrophysiological evidence of combined

upper and lower motor neuron involvement and fulfilled the revised El Escorial criteria for clin-

ical definite and probable ALS (Brooks et al., 2000). 26 patients had sporadic ALS and four

had a history of suspected ALS in a first degree relative. Ten patients had bulbar onset, eleven

had upper limb onset and nine had lower limb onset. Exclusion criteria included the presence

of another neurological disorder, the presence or history of a psychiatric disorder, and the pres-

ence of severe cardiovascular risk factors. None of the patients had evidence of dementia in
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clinical notes or on initial discussion, although one patient was subsequently found to fulfil the

criteria for possible behavioural variant FTD (Rascovsky et al., 2011) after a detailed interview

with a caregiver. Disease severity was assessed using the ALS Functional Rating Scale-Revised

(ALSFRS-R; Cedarbaum et al. 1999), and the rate of disease progression was determined us-

ing (Ellis et al., 1999; van der Graaff et al., 2011). Thirty age- and education-matched healthy

controls were recruited from the University of Edinburgh, Psychology Department’s Volunteer

Participant Panel, staff working in the University of Edinburgh and from spouses of participat-

ing patients. None of the participants had significant neurological or psychiatric comorbidity.

5.4 Network construction

Structural networks were constructed as detailed in Chapter 3 and informed by the findings

from our test-retest analysis. Whole-brain tractography was performed using probabilistic trac-

tography as described in Section 3.6.2. Tracking was initiated from all white matter voxels and

streamlines were constructed in two collinear directions until terminated by the following ter-

mination criteria designed to minimise the amount of anatomically implausible streamlines:

(1) exceeding a curvature threshold of 70 degrees; (2) entering a voxel with FA below 0.1; (3)

entering an extra-cerebral voxel; (4) exceeding 200 mm in length; and (5) exceeding a distance

ratio metric of 10. Networks were then constructed by recording connections between all ROI

pairs. The endpoint of a streamline was considered to be the first grey matter ROI encoun-

tered when tracking from the seed location. The streamline density weighting, recorded the

interconnecting streamline density corrected for ROI size was computed (Equation 3.10). As

tractography is prone to producing false connections (Van Essen and Ugurbil, 2012), we used

prior knowledge of white matter anatomy to discard a proportion of spurious connections. Any

implausible streamlines traversing from one cortical hemisphere to any contralateral subcortical

node were discarded (Funnell et al., 2000). To further reduce spurious connections, a two-step

threshold on the network weights was then applied: 1) for each subject, discard the weakest

25% of weights in the matrix by connection probability (Equation 3.10); 2) across the cohort,

only retain connections which occur in at least 50% of subjects. The second step is required to

discard connections which have been removed for some subjects but not others by the first step.

From the remaining set of streamlines FA-weighted networks were then computed by recording

the mean FA value along interconnecting streamlines (Equation 2.7). FA-weighted networks

were constructed because FA is believed to reflect aspects of the microstructural integrity of the

underlying axonal fibres. For each FA-weighted matrix, five global network measures, as de-

scribed in Section 3.8, were then computed. These five measures were the network sparsity, the

network strength (the average sum of weights per node), network clustering coefficient (an av-

erage measure of local connectivity), the network efficiency (the average of the inverse shortest
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path length) and the network transitivity (a normalised variant of clustering coefficient).

5.5 Statistical analysis

The global network properties and the measures of disease state and disease progression were

assessed for normality by Shapiro-Wilk test with non-normality accepted at p < 0.05 level of

significance. Group contrasts were performed by a two-sample t-test for Normally distributed

data. The two-tailed probability level was used for all global comparisons. Correlations for

non-Normal variables were computed with Spearman’s rank correlation coefficient.

5.5.1 Network analysis

Firstly, in order to assess any differences in global connectivity between the patient and control

groups, the global network measures were tested with uncorrected p < 0.05 being considered

statistically significant. Secondly, network connections were compared between the patient and

control groups using NBS (Zalesky et al., 2010a), without a priori selected regions. For our

85 node networks there are 3570 possible network connections. As a result, standard statistical

tests may be under-powered when corrected for multiple comparisons. NBS is an alternative

approach which exploits the extent to which the connections identified by the contrast are inter-

connected to offer a potential gain in statistical power, for which the significance of maximally

connected subnetworks are assessed rather than individual connections (Zalesky et al., 2010a).

In the NBS framework, first a two-sample one-tailed t-test was performed at each of the 3570

network connections in order to identify reduced white matter integrity in the patient group

compared with the control group. Secondly, a set of suprathreshold edges and the correspond-

ing set of maximally connected network components was computed by a network-defining

threshold on the t-statistics. Permutation testing, which randomly exchanged the group to

which each subject belonged, was used over 5000 iterations to estimate the distribution of

component size and compute a corrected p-value for the maximally connected subnetwork(s).

In NBS terminology, the ‘intensity’ of each maximally connected network was tested rather

than the ‘extent’ (size of the network) as this directly assesses the magnitude of the test statis-

tic. For completeness, we also repeated the NBS analysis to identify any increased white

matter integrity in the patient group compared to the control group. Both comparisons were

then repeated with correction for age. In addition, the streamlines involved in any network

identified by NBS were used to compute maps of streamline density per voxel for each subject,

as described in Section 3.6.6. The cerebral areas identified in these maps were then visually

compared with the findings from TBSS.
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5.5.2 Tract-based spatial statistics

TBSS is an established voxel-based analysis of white matter tracts using dMRI, which has been

described in detail elsewhere (Smith et al., 2006). A between-group comparison of FA was

performed with TBSS. Firstly, a nonlinear deformation was used to align the FA map of each

subject to a white matter template in standard space. White matter masks were ‘skeletonised’

(morphologically thinned) in order to obtain the centre-line of the principal white matter path-

ways, while minimising the impact of registration error and partial volume effects. Voxel-wise

FA was then compared between groups within the white matter skeleton. Finally, permutation

testing assigned a corrected p-value to each voxel, for which p < 0.05 was considered signif-

icant. Comparisons were performed to identify both reduced and increased FA in the patient

group when compared to the control group.

5.5.3 Comparison between network analysis and TBSS

We formulated a simple measure of network-tract agreement in order to compare the findings

from the network analysis and the findings from the TBSS procedure. This assesses whether

the network connections overlap with the voxels of the white matter skeleton identified by

TBSS. Such a measure of agreement may be useful in validating that any impaired connections

identified by a network-based contrast, such as NBS, overlap with the white matter skeleton

identified by a TBSS contrast when assessing the same data. Firstly, the corrected p-value

maps produced by the TBSS contrast were thresholded at p < 0.05. These masks were then

transformed to each subject’s native space, using the nonlinear transforms computed by the

TBSS procedure. For each subject, a measure of overlap per connection based on streamline

density was computed,

ri j =
|Di j|
|Si j|

, (5.1)

where |Si j| is the count of all streamlines found between nodes i and j (as in Section 3.8) and

|Di j| is the count of streamlines which pass through at least one voxel of the p-value mask

(where Di j ⊂ Si j). Note that the correction for ROI size (as in Eq. 3.10) is not necessary here

as this cancels out when applied to both D and S. For each network connection, this results in

a score between 0 and 1, reflecting the proportion of streamlines connecting node i and node

j which pass through any voxel identified by TBSS. A t-test was used to compare the mean

overlap for connections within the observed network against the non-zero connections outwith

this network.
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N (ALS:Controls) ALS Patients Controls

Age (years) 30:30 58.5 (28–79) 59.1 (34–79)

Gender (male:female) 30:30 17:13 17:13

WTAR IQ 27:30 104 (81–123) 108 (87–124)

Table 5.1: Demographic data for patients with ALS and control subjects: showing mean values

with ranges in parentheses. Ratios are presented for number of patients versus controls and for

group gender breakdown. WTAR indicates Wechsler test of adult reading

5.6 Results

5.6.1 Participants

Demographic data and the findings from a battery of neuropsychological tests have been de-

scribed previously (Bastin et al., 2013; Pettit et al., 2013). Table 5.1 shows the demographic

data in terms of age, gender and premorbid intelligence quotient (IQ) as assessed by the Wech-

sler Test of Adult Reading (WTAR). The mean age of the 30 ALS patients, of which 17 were

male, was 58.5± 11.2 years (mean ± standard deviation). The mean age of the 30 control

subjects, of which 17 were male, was 59.1±12.0 years. There were no significant differences

between groups in age, gender or IQ as assessed by WTAR. In the patient group, the mean

ALFRS-R score was 38.8± 6.76. The mean disease duration was 24.0± 18.35 months and

the median disease duration was 19.4 as two patients had disease duration of over 60 months.

The corresponding disease progression rate was 0.49±0.39. Two ALS sessions were excluded

from the study due to incomplete MRI data or excessive motion artefact.

5.6.2 Network analysis

Visual inspection of the segmentations for each subject indicated that the FreeSurfer procedure

provided plausible brain extraction, tissue segmentation and cortical labelling. Approximately

6 million streamlines were seeded per subject. Visual assessment of the streamlines remaining

following network thresholding indicated that the majority of streamlines were anatomically

plausible. Out of the total streamlines seeded, 14.73±1.59% were then identified as intercon-

nections in the ALS group and 15.24± 1.96% in the control group. A one-tailed t-test found

no difference in the streamline success rate between groups. Figure 5.1(a) shows the mean

connectivity matrix averaged across all subjects. Figure 5.1(b) shows the histograms of net-

work weights in both groups, indicating that there is very little variation in global connectivity

between the patient and control groups. All global network measures (Table 5.2) were found to

be approximately Normally distributed. Although all global measures were lower in the ALS
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Figure 5.1: a) 85×85 connectivity matrix showing the mean weights across all subjects (N=58);

b) The histograms of network weights (tract-averaged FA) across all subjects in both groups.

Network measure ALS Patients Controls t-stat p

Network sparsity 0.782 (0.01) 0.783 (0.01) -0.451 0.654

Network strength 6.867 (0.4) 6.913 (0.5) -0.363 0.718

Network clustering coefficient 0.227 (0.01) 0.230 (0.01) -1.236 0.222

Network efficiency 0.229 (0.01) 0.231 (0.01) -0.732 0.467

Network transitivity 0.200 (0.01) 0.201 (0.01) -0.798 0.428

Table 5.2: Global network properties with mean values and standard deviations in parentheses,

t-statistic and uncorrected p-value between groups.

group than in the control group, individual t-tests suggested that these differences were not

significant.

However, NBS identified a subnetwork (10 nodes and 12 bidirectional connections, Figure 5.2)

of impaired connectivity in the ALS group (p = 0.020, corrected). The t-statistic threshold was

set to 2.6. This value was chosen empirically – an approach suggested by the author of NBS

(Zalesky et al., 2010a).

The resulting network involves four nodes within the primary motor cortex (bilateral precentral

and paracentral), left superior frontal, the left-posterior cingulate and four subcortical areas (bi-

lateral pallidum, left thalamus, left caudate). All 12 network connections are directly linked to

nodes within the primary motor cortex. Table 5.3 shows the mean FA values in both groups and

the corresponding t-statistic for each of these network connections. Overall, the connections in

the affected network showed a mean reduction of 0.04±0.03 (approximately 10%) in terms of

FA in the patient group when compared to the controls.

Figure 5.3 shows the cortical regions and the streamlines involved in the affected network for

one patient. Figure 5.4 shows the areas involved in the affected network across all subjects,
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Figure 5.2: Coronal, sagittal, axial and abstract views of the impaired network nodes and

interconnections identified by NBS where lobe/cortex membership is indicated by node colour.
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Network connection ALS Patients Controls t-stat

Left-caudate – Left-precentral 0.37 (0.08) 0.43 (0.03) 3.454

Right-paracentral – Right-precentral 0.30 (0.04) 0.33 (0.04) 3.190

Left-paracentral – Left-superior frontal 0.29 (0.04) 0.32 (0.03) 3.161

Left-pallidum – Left-precentral 0.47 (0.04) 0.50 (0.03) 3.153

Left-superior frontal – Right-paracentral 0.44 (0.1) 0.50 (0.04) 3.093

Left-posterior cingulate – Right-paracentral 0.47 (0.04) 0.50 (0.04) 2.993

Left-superior frontal – Right-precentral 0.36 (0.2) 0.47 (0.1) 2.905

Left-thalamus – Left-precentral 0.45 (0.04) 0.47 (0.02) 2.858

Right-pallidum – Right-precentral 0.46 (0.04) 0.48 (0.03) 2.843

Left-caudate – Left-paracentral 0.37 (0.04) 0.39 (0.03) 2.783

Left-precentral – Left-superior frontal 0.36 (0.04) 0.39 (0.03) 2.681

Left-paracentral – Left-precentral 0.30 (0.04) 0.33 (0.04) 2.631

Table 5.3: Mean FA values of the impaired network connections identified by NBS with standard

deviations in parentheses and the t-statistic. All connections are collectively assigned a single

p-value (p = 0.020, corrected).

(a) (b)

Figure 5.3: a) The cortical regions (bilateral precentral, bilateral paracentral and left superior

frontal gyrus) involved in the impaired network; b) Coronal view of the streamlines (yellow) in-

volved in the impaired network for one ALS patient (63 year old male) where colouring indicates

the precentral gyrus and globus pallidus.
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Figure 5.4: Coronal, sagittal and axial slices of the mean FA in MNI standard space, overlaid with

the mean streamline density per voxel computed from the streamlines involved in the affected

network and transformed to MNI space.

in terms of the mean streamline density per voxel. The converse NBS contrast testing for

increased white matter integrity in the patient group when compared to the controls produced

no significant results. In addition, the contrasts which included age as a covariate showed no

fundamental differences in the results or topology of the observed network.

5.6.3 Comparison of network analysis to TBSS

The TBSS contrast comparing the patient and control groups found significant reductions in

FA within the corticospinal tract and portions of the corpus callosum (Figure 5.5). TBSS found

no areas of increased FA in the patient group when compared to the controls.

The affected areas of the white matter skeleton identified by TBSS were found to overlap with

the areas involved in the affected network (Figure 5.4). Figure 5.6 shows the mean overlap

proportion (Equation 5.1) with 95% inter-percentile range for the 12 network connections iden-

tified by NBS. Notably, 11 out of 12 connections had an overlap proportion > 0.75, suggesting
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Figure 5.5: Coronal, sagittal and axial slices of the results from TBSS, showing the mean FA in

MNI standard space overlaid with the voxels found to have reduced white matter integrity (FA)

in the patient group compared to the controls (p < 0.05).

that the majority of streamlines involved in the affected network passed through the white mat-

ter identified by TBSS. Only the connection between left paracentral and left superior frontal

gyrus had a lower score of 0.21, suggesting that the streamlines involved in this connection

were less in agreement with the TBSS analysis. Overall, 73.6± 2.2% of all (whole-brain)

network connections in the patient group and 73.0± 2.9% in the control group had at least

one streamline which passed through a region identified by TBSS, suggesting that the white

matter regions identified by TBSS are common to many white matter connections. However,

39.7±2.3 of all network connections in the patient group and 40.1±2.0% in the control group

had half of the total streamlines pass through a region identified by TBSS. Crucially, the mean

overlap proportion (Equation 5.1) is 0.385± 0.017 for connections outside the impaired net-

work, compared to a mean proportion of 0.862±0.041 for the connections within the impaired

network. A t-test showed that these proportions were significantly different (p << 0.001).
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left−paracentral <−> left−superior frontal

left−paracentral <−> left−precentral

left−caudate <−> left−paracentral

right−paracentral <−> right−precentral

left−precentral <−> left−superior frontal

left−superior frontal <−> right−precentral

right−pallidum <−> right−precentral

left−superior frontal <−> right−paracentral

left−pallidum <−> left−precentral

left−caudate <−> left−precentral

left−thalamus <−> left−precentral

left−posterior cingulate <−> right−paracentral

0.00 0.25 0.50 0.75 1.00
overlap

Figure 5.6: Mean network-tract overlap proportion with 95% inter-percentile range (N=58) for

the 12 connections of the affected network, showing the proportion of interconnecting stream-

lines which pass through any white matter region identified by TBSS at p < 0.05.

5.6.4 Impaired connectivity correlates of disease state

Relationships between the 12 affected network connections, which showed significant differ-

ences between patient and control groups (Figure 5.2), and two clinical measures (ALSFRS-R

score and disease progression) were investigated in the patient group. Correlational analyses

found four uncorrected associations with the ALSFRS-R score and three associations with the

disease progression rate (Table 5.4). Notably, three of the connections identified were the same

for both the ALSFRS-R score and the progression rate (Figure 5.7). Relationships between the

clinical measures were also assessed, finding that the ALSFRS-R score and the progression

rate were inversely correlated (ρ =−0.52, p = 0.006).

5.7 Discussion

This study presented a whole-brain network analysis of white matter integrity in ALS, without

using a priori selected regions. Global network properties (Table 5.2) indicate that the networks

in both the patient and control groups were similar and show a level of clustering and network

efficiency comparable to other network studies (Verstraete et al., 2011). Note that the absolute

values of these network properties are dependent on the choice of nodes and thresholding in

each study. The between-group comparison of the global network properties found no brain-
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Figure 5.7: Correlations between clinical measures and the tract-averaged FA of three im-

paired network connections for the ALS patients (p < 0.05, uncorrected): Left) ALSFRS-R

score; Right) the disease progression rate.
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ALSFRS-R score Disease progression

Network connection ρ p q ρ p q

Left-caudate – Left-paracentral 0.166 0.399 0.532 -0.035 0.862 0.862

Left-thalamus – Left-precentral 0.392 0.039 0.118 -0.578 0.002 0.017
Left-caudate – Left-precentral 0.383 0.044 0.118 -0.292 0.140 0.322

Left-pallidum – Left-precentral 0.375 0.049 0.118 -0.515 0.006 0.024
Left-paracentral – Left-precentral -0.016 0.936 0.936 0.139 0.488 0.651

Left-paracentral – Left-superior frontal 0.104 0.597 0.717 -0.098 0.627 0.752

Left-precentral – Left-superior frontal -0.073 0.712 0.777 0.074 0.714 0.779

Left-posterior cingulate – Right-paracentral 0.325 0.092 0.157 -0.299 0.129 0.322

Left-superior frontal – Right-paracentral 0.325 0.091 0.157 -0.261 0.188 0.322

Right-pallidum – Right-precentral 0.387 0.042 0.118 -0.552 0.003 0.017
Left-superior frontal – Right-precentral 0.430 0.022 0.118 -0.265 0.182 0.322

Right-paracentral – Right-precentral 0.261 0.181 0.271 -0.153 0.447 0.651

Table 5.4: Correlations between clinical measures and the tract-averaged FA of the impaired

network connections, showing both uncorrected p-values and q-values adjusted by false dis-

covery rate. Emboldening indicates significance after adjustment (q < 0.05).

wide impairments in connectivity for the patient group when compared to the control group as

shown in Table 5.2 and Figure 5.1(b). By definition, global network properties take an average

across all network connections and therefore any localised effects could be averaged away.

These results suggest that, as expected, ALS is not a brain-wide disease and that global brain

organisation has remained largely intact for the ALS patients. This finding is in agreement

with Verstraete et al. (2011), who found no differences in global graph metrics between ALS

patients and controls, but did find localised impairment in motor and frontal brain areas.

Our results suggest that in the patient group, connectivity to primary motor, prefrontal, and

subcortical areas is substantially reduced, in terms of tract-averaged FA, and that these impair-

ments are predominantly localised around the motor cortex (Figure 5.2, 5.3). Notably, although

a brain-wide analysis was performed, without a priori selected regions, the network identified

involves regions which are known to be associated with motor control and movement. The

white matter pathways identified are consistent with upper motor neuron pathology.

Previous dMRI studies have shown reduced white matter integrity in the corticospinal tract and

corpus callosum (Agosta et al., 2010; Cirillo et al., 2012), areas which are interlinked with

several of the subcortical and motor cortex nodes within our affected network (Figures 5.2,

5.3). The network study of ALS by Verstraete et al. (2011) identified a nine node network

which found a comparable pattern of motor network impairment involving connections to pre-

central, paracentral, pallidum, frontal areas and the cingulate cortex. In addition, voxel-based

studies have identified reduced white matter changes in the corticospinal tract and the medial
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portion of the corpus callosum (Abrahams et al., 2005; Filippini et al., 2010). Previous func-

tional MRI studies have identified impairment in functional connectivity associated with ALS

(Mohammadi et al., 2009). Promisingly, studies in healthy human volunteers have found some

convincing associations between functional and structural connectivity (Hagmann et al., 2008;

Honey et al., 2010). However, to our knowledge, this structure-function correspondence has

not yet been demonstrated in an ALS network. One recent study has produced findings which

suggest that the level of functional connectedness within the motor network is correlated with

the rate of disease progression (Verstraete et al., 2010).

The comparison between network analysis and the findings from TBSS offers some insight.

Approximately 40% of all connections had half of the total streamlines pass through a region

identified by TBSS. This indicates that the white matter identified by the TBSS contrast con-

tains a common ‘hub’ connecting grey matter regions, for instance, via portions of the corpus

callosum. The comparison of the mean overlap proportion within and outwith the impaired

network indicates a strong, but not perfect, agreement between the white matter identified by

TBSS and the affected network identified by NBS. Notably, NBS identified one network con-

nection between left paracentral and left superior frontal gyrus that was unlikely to have been

concluded from the TBSS analysis (Figure 5.6). Conversely, there were several connections

outside the affected network which also had a high overlap proportion (close to 1), which were

not identified by NBS. Due to limitations of the data and methodological problems with tractog-

raphy, some connections may contain spurious streamlines which cross the regions identified

by TBSS.

The associations between the affected network connections and the disease state indicate that

for the patients, the bilateral precentral to pallidum and left precentral to left thalamus con-

nections are increasingly impaired over disease progression (Figure 5.7). Notably, all affected

connections (Table 5.4) involve fibres which run through the cortical to subcortical portion of

the corticospinal tract (Figure 5.3). Both the ALSFRS-R scores and disease progression rate

correlate with a reduction in white matter integrity in these fibres. These findings provide sup-

porting evidence for similar relationships found between disease progression and FA in the

rostral portion of the corticospinal tract reported in a previous study (Verstraete et al., 2010).

Furthermore although measures of cognitive performance were gathered for the patient group

(Pettit et al., 2013), no meaningful correlations emerged between the affected network and

these measures of executive performance (data not shown). However the affected network

included prefrontal regional nodes (namely the superior frontal gyrus) found to be affected in

our previous analyses and related to impairments in letter fluency (Pettit et al., 2013).

Our ALS cohort includes a proportion of patients with FTD. Consequently, it might be expected

that network analysis would identify impairment in extra-motor regions, as other researchers
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have posited (Verstraete et al., 2011). However, with the exception of left superior frontal

gyrus, our network was largely localised around the motor cortex. A post-hoc NBS analysis

using a more speculative threshold on the t-statistic suggested that many extra-motor brain

regions, including frontal and temporal areas could be identified by the contrast but at lower

levels of significance. These findings suggest that although changes in structural connectivity

may be widespread in ALS, overall the degeneration is strongly linked to the motor cortex.

5.7.1 Strengths and limitations

One strength of this study is the relatively large and well-characterised patient samples with

age- and education-matched controls. However, we are aware that control subjects recruited

from within the University are unlikely to be well matched for socio-economic status or IQ.

To our knowledge, this is the first study to utilise probabilistic tractography and model multi-

ple fibre populations in a network analysis of ALS. Such techniques should be better able to

account for branching and crossing fibres, in comparison to deterministic tractography. In addi-

tion, previous ROI-based studies are typically limited to assessing changes in a limited number

of regions. However, the network analysis used in this study offers the possibility to explore

ALS as a network disease, potentially involving thousands of connections. Furthermore, in

comparison to TBSS or other template-space analyses, network analysis is computed in native

space rather than standard space, thereby accounting for individual differences in white matter

structure and providing a more representative reconstruction of the underlying axonal wiring.

Like previous network studies (Verstraete et al., 2011, 2013) we chose to use FA-weighted net-

works, rather than streamline density, as FA is likely to be a more representative measure of

disruption in the underlying axonal fibres in case-control studies.

We note that although NBS was designed to reduce the false positive rate, tractography is

known to be strongly affected by measurement noise resulting in both false positive and false

negative connections (Jbabdi and Johansen-Berg, 2011; Zalesky and Fornito, 2009). Some

error may reflect tractography issues in estimating the underlying axonal fibres from noisy

measurements. Other errors may be due to both ROI segmentation errors affecting seeding.

Additionally, thresholding of networks must be performed with caution. We believe that the

two-step thresholding procedure used in this study eliminates a proportion of implausible con-

nections without biasing the results of a group-wise analysis. However, due to the limitations

of current dMRI and tractography techniques it is not possible to eliminate all erroneous con-

nections.

In addition, when considering the correlations between clinical measures and the tract-averaged

FA of three impaired network connections (Figure 5.7), we observed that there is a possibil-
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ity that some data points could be outliers. An outlier which falls near the regression line

will falsely increase the value of the correlation coefficient. We are aware that such outlying

points could have some impact on the correlation results because the sample size is fairly small

(N=28).

5.8 Conclusions

This chapter presented a whole-brain network analysis of white matter degeneration in ALS

using strong constraints on the anatomical plausibility of tracts. The key findings were that

while there were no brain-wide impairments in connectivity due to ALS, an impaired motor-

frontal-subcortical network of reduced white matter integrity was found in the ALS patients.

These findings suggest that degeneration in ALS is strongly linked to the motor cortex. The

connections involved in our network analysis had a strong correspondence with tracts identified

by a conventional TBSS analysis of the same data. Reduced white matter integrity in three of

the impaired network connections, which involve fibres of the corticospinal tract, correlated

with both the ALSFRS-R score and disease progression. Further analysis of the association

between cognitive impairments and extra-motor connections merits further investigation.



Chapter 6

Brain networks in normal ageing

6.1 Overview

Our methods were used to assess structural brain connectivity in a group of 80 healthy vol-

unteers, aged from 25 to 64 years. Such a cross-sectional analysis has the potential to find

supporting evidence, in terms of brain organisation, for the widely reported age-related decline

of white matter integrity. For each subject, we identified 85 network nodes and whole-brain

networks were constructed using an anatomically motivated white matter waypoint constraint

and a weighting reflecting tract-averaged FA. Motivated by the findings from previous research

in ageing we carried out a number of statistical analyses to assess the relationships between

age and brain structure in our cohort. Firstly, a structural analysis was performed to assess

age-related changes in tissue volume and in global white matter integrity. Secondly, a conven-

tional voxel-based analysis (TBSS) of the dMRI data was performed to assess the effects of

age and gender within major white matter pathways. Thirdly, the relationships between age

and both global and lobar network properties were assessed, including those properties which

may capture a decline in connectivity, network efficiency or interhemispheric transfer. Finally,

a mass-univariate network analysis (NBS) was used to identify any network connections show-

ing changes with age and/or gender.

This chapter begins with a brief overview of the ageing brain, covering the reported age-related

changes in brain structure, white matter and connectivity. This is followed by a description of

the participants, methods and the analyses performed. Results are then presented and, finally,

the findings and limitations are discussed.

119
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6.2 The Ageing Brain

A huge amount of neuroscientific effort has been put into understanding the mechanisms and

consequences of ageing in the brain. Research suggests that brain ageing is associated with

marked chemical and structural alterations which give rise to changes in function and cognition.

6.2.1 Cognitive ageing

In general, the ability to perform working memory tasks and rapid processing becomes increas-

ingly difficult with advancing age, even in the absence of pathology (Salthouse et al., 2003).

There is strong evidence that ageing primarily affects the cognitive processes associated with

frontal brain regions (Buckner, 2004; Hedden and Gabrieli, 2004; DeCarli et al., 2005), such as

processing speed, working memory, executive function, problem solving and reasoning abili-

ties (Sullivan and Pfefferbaum, 2006). The frontal ageing hypothesis (O’Sullivan et al., 2001)

posits that age-related brain changes selectively impact frontal regions. However, the notion of

exclusive frontal ageing remains controversial and the global disconnection hypothesis (Green-

wood, 2000) predicts that changes may be more widespread. Although cognitive abilities have

been found to decline in old age (60–85 years of age), there is evidence that in elderly patients,

auxiliary brain regions may be recruited when performing executive functions – a pattern which

is not seen in younger adults (Cabeza et al., 2002). Additionally, functional research shows a

typical age-related shift from unilateral processing to bilateral processing, meaning that more

regions are recruited as needed (cognitive reserve), but performance does not necessarily de-

cline (Whalley et al., 2004). However, in very old age (more than 85 years of age) any com-

pensatory systems may themselves become too degraded to support processing (Sullivan and

Pfefferbaum, 2006).

6.2.2 Structural changes

Structural neuroimaging studies have consistently shown an age-related decline in cortical grey

matter volume and an associated increase in ventricular volume and extracellular space (Good

et al., 2001; Resnick et al., 2003; Sullivan et al., 2004). Grey matter atrophy has been shown

to primarily affect frontal, cingulate, insular and inferior parietal regions (Good et al., 2001;

Resnick et al., 2003). While there is a marked decline in cortical volume with age, post-

mortem studies have shown that there is little change in the total neuronal population (Terry

et al., 1987). Likewise, some studies have found a decrease in white matter volume from about

65 years of age, though others studies have found little age-related change except in localised

areas of white matter showing relatively accelerated loss (Good et al., 2001). However, the
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rate of both grey and white matter atrophy appears to accelerate from about 70 years of age

(Resnick et al., 2003). MRI studies typically also show white matter abnormalities in the basal

ganglia and hypointensities due to iron deposits in the globus pallidus and putamen (Moseley,

2002).

6.2.3 White matter changes

Several dMRI studies have identified an age-related decline in white matter integrity, which

is most pronounced in frontal regions, particularly in very old age (Pfefferbaum and Sullivan,

2003; Pfefferbaum et al., 2005; Salat et al., 2005; Sullivan et al., 2006; Bastin et al., 2008,

2010). Large age-related decreases in FA have been found in white matter structures, such

as the corpus callosum genu (Sullivan et al., 2006; Bastin et al., 2008, 2010), splenium (Pfef-

ferbaum and Sullivan, 2003), anterior cingulum, and middle frontal gyrus (Pfefferbaum et al.,

2005). Such age-related declines in FA may be indicative of the gradual demyelination and loss

of myelinated axons, which have been observed in post-mortem studies (Sullivan et al., 2001).

Histology studies have shown a brain-wide age-related decline in the number and length of

myelinated fibres (Tang et al., 1997; Marner et al., 2003). Research has shown that thin, un-

myelinated fibres in frontal brain regions are most susceptible to loss (Bartzokis, 2004, 2011).

Some researchers have consider that these declines are manifestations of a ‘disconnection syn-

drome’ (O’Sullivan et al., 2001) which increases in severity with age. It may be that while the

cortical connections of the brain remain largely intact until very old age, the overall integrity

of the white matter connections deteriorates gradually from early adulthood. It is thought that

this decline begins from about 20 years of age (Pfefferbaum and Sullivan, 2003), is linear and

primarily impacts frontal regions. Some studies have reported that the decline is equivalent in

both men and women (Sullivan et al., 2006). Longitudinal age-related decline in white matter

FA has also been reported (Barrick et al., 2010). In addition, research has shown both signif-

icant negative correlation between FA and age, and a significant positive correlation between

〈D〉 and age, in certain white matter structures, such as the corpus callosum genu (Bastin et al.,

2008, 2010) and splenium (Pfefferbaum and Sullivan, 2003). These correlations have been

found equally in both men and women. This inverse FA-diffusivity relationship is suggestive

of an age-related decline of white matter integrity, possibly caused by degradation of myelin

and axonal membranes and accompanied accumulation of intracellular and extracellular fluid.

Heterogeneous age-related changes in the corpus callosum (Sullivan et al., 2006; Bastin et al.,

2008), the principal white matter structure for interhemispheric communication, indicate that

appropriate network analysis may find age-related alterations in patterns of connectivity. Some

researchers have found that brain atrophy and white matter lesions play a significant role in

localised age-related changes in white matter tract shape and integrity (Bastin et al., 2010;
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Maniega et al., 2014), indicating that network connectivity may be altered in such regions.

Localising the age-related alterations in white matter and identifying their relationship to cog-

nitive decline may advance our understanding of the structure-function relationship for both

normal ageing and neurodegenerative disorders.

6.2.4 Networks in ageing

The changes in brain organisation due to both normal and abnormal ageing has been widely

studied using network analysis and graph theory for both structural and functional MRI (Gong

et al., 2009a; Robinson et al., 2010; De Boer et al., 2010; Lo et al., 2010; Wen et al., 2011;

Fischer et al., 2014). Many of these studies identified marked age-related changes in connec-

tivity, particularly in very old age. In a widely cited study, Gong et al. (2009a) investigated the

effect of age and gender on the structural networks obtained from dMRI and tractography in

a group of 95 subjects aged from 19 to 85 years. They identified the precuneus and posterior

cingulate gyrus as highly connected hub nodes independent of age or gender. They found an

overall reduction in cortical connectivity and network efficiency with increasing age. In con-

trast, Robinson et al. (2010) used a novel machine learning approach to identify differences in

connections obtained from dMRI and tractography between two age groups (20-30 and 60-90

years of age). Particularly discriminative connections are found in the fibres between the left

insula and left lingual gyrus, and between the left superior frontal gyrus and left medial orbital

gyrus. In general, network studies consistently show age-related changes, both increasing and

decreasing, in connections to frontal, temporal and medial brain structures. However, not all

studies agree on the pathways involved.

6.3 Participants

80 healthy, right-handed, volunteers aged between 25 and 65 years were recruited by a poster

campaign from staff working in the University of Edinburgh, Western General Hospital, and

Royal Infirmary of Edinburgh, Scotland, UK. The study was designed to image 40 male and

40 females subjects, with uniformly distributed ages between 25 and 65 years. To provide

normative data for this age range, subjects were recruited if they were native English speakers,

were not on any long term medication with the exception of the contraceptive pill, had not been

diagnosed with diabetes or high blood pressure, had not undergone previous cranial surgery,

had alcohol consumption levels within the UK national safety guidelines (21 and 14 units per

week for males and females), and were registered with a general practitioner (GP) in the UK.

The study was approved by the Lothian Research Ethics Committees (REC 05/S1104/45) and

all subjects gave written informed consent.
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6.4 Network construction

All subjects underwent an MRI protocol, as described in Section 3.2. Following pre-processing

and tractography, whole-brain networks were constructed by recording connections between all

85 ROIs (Section 3.7). The endpoint of a streamline was considered to be the first grey mat-

ter ROI encountered when tracking from the seed location. The streamline density weighting,

recorded the interconnecting streamline density corrected for ROI size was computed (Equa-

tion 3.10). Note that while cortical grey matter volumes can be markedly different across

an ageing cohort, the grey matter normalisation corrects for the bias in the resulting network

measures due to between-subject variability in cortical volume. Any implausible streamlines

traversing from one cortical hemisphere to any contralateral subcortical node were discarded.

To reduce spurious connections, a two-step threshold on the network weights was then applied:

1) for each subject, discard the weakest 25% of weights in the matrix by connection proba-

bility (Equation 3.10); 2) across the cohort, only retain connections which occur in at least

50% of subjects. The second step is required to discard connections which have been removed

for some subjects but not others by the first step. From the remaining set of streamlines FA-

weighted networks were then computed by recording the mean FA value along interconnecting

streamlines (Equation 2.7). For the context of ageing, the FA-weighting was applied because

FA is believed to reflect some aspects of the microstructural integrity of the underlying axonal

fibres.

For each FA-weighted matrix, seven network measures were then computed as defined in Sec-

tion 3.8. This included five commonly used measures of connectivity: the network degree (av-

erage number of connections per node), the network strength (the average sum of weights per

node), network clustering coefficient (an average measure of local connectivity), the character-

istic path length (mean of all shortest path lengths) and the network efficiency (the average of

the inverse shortest path length). A measure of centrality, the betweenness centrality was also

calculated, which can be an indicator of hub nodes, which participate in many shortest paths

through a network. In addition, motivated by the reported findings of recruitment and increased

interhemispheric transfer in older subjects, we also included a measure of inter-module partici-

pation, the interhemispheric participation coefficient. First the network nodes were assigned to

two modules by hemisphere and then the coefficient was calculated by Equation 3.29. Each of

these seven measures were computed per node for each subject. Global network measures were

computed by taking the mean of all nodal values. Lobar measures were computed by taking the

mean of nodal values per lobe. The six lobar regions were frontal, temporal, parietal, occipital,

cingulate, and subcortical. In addition, one further measure was computed for global networks

only, the network transitivity (a normalised variant of the clustering coefficient).
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6.5 Statistical analysis

Motivated by the reported age-related declines in grey matter volume, white matter integrity

and network connectivity, a number of statistical analyses were used to assess the relationships

between age and imaging properties for our subjects. For all tests, p < 0.05 was considered

statistically significant.

6.5.1 Volumetric analysis

A volumetric analysis of the T1-weighted tissue segmentations and the FA in cerebral white

matter was performed. From the results of the FreeSurfer segmentation procedure, volumes

were computed in MNI-305 space for white matter, cortical grey matter and subcortical grey

matter, for each of the 80 subjects. Cerebellar regions were not included in the calculation and

subcortical grey matter consisted of the regions defined in Appendix A, excluding the brain

stem. Mean and median FA values in white matter were computed for each subject by: 1)

aligning FreeSurfer segmentations to dMRI space, as described in Section 3.5; 2) computing

the mean and median FA values from the FA voxels within the white matter mask. Each of these

image properties was assessed for relationship with age using Pearson’s correlation coefficient

and a p-value was computed.

6.5.2 Tract-based spatial statistics

Tract-based spatial statistics was used to assess age and gender effects in the FA of major white

matter pathways. Following the TBSS procedure (Smith et al., 2006), a nonlinear deformation

was used to align the FA map of each subject to a white matter template in standard space.

White matter masks were morphologically thinned in order to obtain the centre-line of the

principal white matter pathways, while minimising the impact of registration error and partial

volume effects. A one variable general linear model was used to assess the relationship between

age and the FA within voxels of the white matter skeleton. This model was used to test for both

an increase and decrease in FA with age. In addition a two variable model was used to test

six hypotheses of age and gender effects for the same white matter voxels. Permutation testing

assigned a corrected p-value to each voxel.

6.5.3 Network analysis

Following construction of FA-weighted networks we performed three levels of network anal-

ysis. Firstly, we assessed age-related change in nine network properties at a global network
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level using Pearson’s correlation coefficient. Secondly, we repeated the analysis at a lobar

network level for seven network properties in all six lobes. Finally, we used NBS (Zalesky

et al., 2010a), without a priori selected regions, to identify network connections showing a

relationship with age or gender. NBS exploits the extent to which the connections identified

by the contrast are interconnected to offer a potential gain in statistical power, for which the

significance of maximally connected subnetworks are assessed rather than individual connec-

tions (Zalesky et al., 2010a). For this analysis only network connections that were present in

all subjects were included. As with TBSS, a one variable general linear model was used to

assess the relationship between age and the network connections, in terms of tract-averaged

FA. This model was used to test for both an increase and decrease in connectivity with age. In

addition a two variable model was used to test six hypotheses of age and gender effects within

the whole-brain networks. Permutation testing, which randomly exchanged the group to which

each subject belonged, was used over 5000 iterations to estimate the distribution of component

size and compute a corrected p-value for the maximally connected subnetwork(s). In NBS

terminology, the ‘intensity’ of each maximally connected network was tested rather than the

‘extent’ (size of the network) as this directly assesses the magnitude of the test statistic. As

suggested by the authors of NBS, we repeated hypothesis testing over a range of t-statistic

thresholds below the maximum t-statistic observed.

6.6 Results

Our methods were applied to the 80 healthy subjects (39 male). The subjects were approxi-

mately uniformly distributed in terms of age between 25 and 64 years. Overall, the mean age

was 43.5 ± 10.6 years. The mean age for male subjects was 43.1 ± 10.0 years and the mean

age for females subjects was 43.8 ± 11.1 years.

6.6.1 Volumetric analysis

Volumetric and structural imaging properties derived from the FreeSurfer T1-weighted segmen-

tations are shown in Table 6.1 for the grey matter regions, cerebral white matter and the mean

and median FA within cerebral white matter. Table 6.2 shows the findings from correlational

analysis of these properties with age. All grey matter regions, except from the subcortical

regions in our female subjects, show a significant age-related decline in volume. Figure 6.1

shows scatter plots for all grey matter volumes (p < 0.003, uncorrected). However, age-related

change in white matter volume was only found in our male subjects (p = 0.041, uncorrected).

No age-related change in mean or median FA in cerebral white matter was evident.
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Property N = 80 Female (N = 41) Male (N = 39)

Grey matter volume (cm3) 512.3 (57.5) 482.6 (40.7) 543.5 (56.4)

Cortical grey matter volume (cm3) 454.6 (52.8) 428.3 (37.6) 482.3 (52.7)

Subcortical grey matter volume (cm3) 57.7 (5.6) 54.3 (4.1) 61.2 (4.7)

White matter volume (cm3) 499.2 (65.8) 459.9 (43.0) 540.5 (60.2)

Mean FA in white matter 0.323 (0.02) 0.323 (0.02) 0.324 (0.02)

Median FA in white matter 0.306 (0.02) 0.306 (0.02) 0.307 (0.02)

Table 6.1: Tissue volumes obtained from the FreeSurfer segmentation and the mean and me-

dian FA within cerebral white matter. Means are shown first with standard deviations in paren-

thesis.

Property N = 80 Female (N = 41) Male (N = 39)

r p r p r p

Grey matter volume -0.423 <0.001 -0.459 0.003 -0.531 <0.001
Cortical grey matter volume -0.422 <0.001 -0.468 0.003 -0.506 0.001
Subcortical grey matter volume -0.369 0.001 -0.267 0.101 -0.633 <0.001
White matter volume -0.129 0.255 0.005 0.974 -0.320 0.041
Mean FA 0.012 0.915 0.046 0.779 -0.013 0.936

Median FA -0.024 0.831 0.006 0.971 -0.046 0.773

Table 6.2: Correlations between volumetric properties and age assessed by Pearson’s correla-

tion coefficient with uncorrected p-values. Emboldening indicates significance at p < 0.05.
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Figure 6.1: Scatter plots and linear fit of grey matter volumes against age for: total grey matter,

cortical and subcortical volumes.
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Hypothesis p

H1: FA increases with age 0.8525

H1: FA decreases with age 0.8741

Table 6.3: Results of hypothesis testing on age using TBSS. The corrected p-values were ob-

tained from permutation testing.

Hypothesis p

H1: FA increases with age, when controlled for gender 0.8849

H1: FA decreases with age, when controlled for gender 0.8621

H1: FA is greater in men, when controlled for age 0.7060

H1: FA is greater in women, when controlled for age 0.7747

H1: age has a greater effect on FA than gender 0.7688

H1: gender has a greater effect on FA than age 0.7248

Table 6.4: Results of hypothesis testing based on gender and age using TBSS. The corrected

p-values were obtained from permutation testing.

6.6.2 Tract-based spatial statistics

Table 6.3 shows the results of hypothesis testing for changes in mean FA with age for white

matter voxels assessed by TBSS. In both cases, the null hypothesis must be accepted; there

is no significant change in FA within these regions due to age. Table 6.4 shows the results of

hypothesis testing for the effects of age and gender on FA with age for white matter voxels

assessed by TBSS. In all cases, there is no significant change with age or gender.

6.6.3 Network analysis

Following connectivity mapping and constraints on the network weights, 14.52± 2.27% of

the total streamlines seeded, were subsequently identified as interconnections across the whole

cohort. The resulting mean network sparsity across all subjects was 0.794± 0.009. Visual

assessment of the streamlines remaining following network thresholding indicated that the ma-

jority of streamlines were anatomically plausible. Figure 6.2(a) shows the mean connectivity

matrix averaged across all subjects. Figure 6.2(b) shows the histograms of FA-weighted net-

work connections with subjects divided into four distinct age groups between 25 and 65 years

of age, indicating that there is very little age-related variation in global connectivity across the

cohort.
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Figure 6.2: a) 85×85 connectivity matrix showing the mean weights across all subjects (N=80);

b) The histograms of network weights (tract-averaged FA) with subjects placed in four distinct

age groups from 25 to 65 years.

6.6.3.1 Global and lobar network analysis

Global network metrics were computed per subject, as described in Section 6.4. Table 6.5

shows the mean and standard deviations for the global measures. Table 6.6 shows the cor-

relation coefficients between these properties and age. Just the mean betweenness centrality

showed a decline in age for the male subjects (p < 0.023, uncorrected).

Lobar network measures were also assessed by correlation. Table 6.7 shows the mean and

standard deviations for nodes within frontal and temporal lobes. Correlations were computed

for all six lobes, but in the interests of space only the results for frontal and temporal regions

are shown because these are arguably of the most interest in ageing. Table 6.8 shows the

correlation coefficients between these lobar properties and age. After correction for multiple

comparisons, none of the lobar network measures showed a relationship with age. However,

some uncorrected statistics indicated a trend for age-related change in lobar network measures,

for example, the betweenness centrality within the cingulate cortex (data not shown).

6.6.3.2 Network-based statistics

Table 6.9 shows the results of hypothesis testing for age-related effects in network connec-

tivity. A number of thresholds on the t-statistic were tested for each hypothesis, but only the

network (and t-statistic) corresponding to the smallest p-value was reported. In both cases,

no significant age-related change in connectivity, in terms of tract-averaged FA, were found in

any network components. However, the test for a decrease in FA with age comes closest to

significance (p = 0.0648, corrected). Table 6.10 shows the results of hypothesis testing for the

effects of both age and gender on connectivity. In all six cases there is no significant change
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Network property N = 80 Female (N = 41) Male (N = 39)

network degree 17.552 (0.79) 17.798 (0.68) 17.294 (0.84)

network strength 6.607 (0.51) 6.712 (0.48) 6.495 (0.52)

characteristic path length 1.178 (0.05) 1.169 (0.05) 1.188 (0.05)

network clustering coefficient 0.225 (0.01) 0.226 (0.01) 0.223 (0.01)

network efficiency 0.225 (0.01) 0.227 (0.01) 0.223 (0.01)

network transitivity 0.198 (0.01) 0.199 (0.01) 0.197 (0.01)

mean betweenness centrality 89.599 (3.83) 88.559 (3.30) 90.693 (4.08)

mean interhemispheric participation 0.216 (0.02) 0.220 (0.02) 0.212 (0.02)

Table 6.5: Global network metrics in normal ageing. Means are shown first with standard devi-

ations in parenthesis.

Network property N = 80 Female (N = 41) Male (N = 39)

r p r p r p

network degree 0.181 0.108 0.179 0.262 0.193 0.239

network strength 0.039 0.734 -0.024 0.884 0.115 0.486

characteristic path length -0.018 0.873 0.030 0.854 -0.074 0.653

network clustering coefficient 0.016 0.885 -0.062 0.699 0.118 0.475

network efficiency 0.016 0.887 -0.030 0.851 0.074 0.656

network transitivity 0.011 0.925 -0.047 0.769 0.088 0.595

mean betweenness centrality -0.194 0.084 -0.034 0.834 -0.364 0.023
mean interhemispheric participation 0.037 0.742 0.062 0.698 0.004 0.981

Table 6.6: Correlation between the global network properties and age using Pearson’s corre-

lation coefficient. Emboldened numbers indicate significance at p < 0.05 level (uncorrected).

in connectivity with age or gender. However, the test for a decrease in FA with age when

controlled for gender was closest to significance (p = 0.0548, corrected). Although this test

was not significant, a post-hoc analysis was used to identify the network connections involved.

There are 2 connections in this subnetwork (left temporal pole - left fusiform and left temporal

pole - left inferior temporal).

6.7 Discussion

The findings from the analysis of tissue volume (Table 6.2, Figure 6.1) are consistent with

previous findings in brain ageing. The decline in grey matter volume with increasing age is one

of the most robust findings in neuroimaging (Moseley, 2002; Sullivan and Pfefferbaum, 2006).

As with previous studies, we found that grey matter degeneration was most pronounced in the

cortex, but was also apparent in subcortical grey matter (although not significant in our female
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Network property N = 80 Female (N = 41) Male (N = 39)

frontal node degree 15.361 (0.83) 15.539 (0.83) 15.175 (0.80)

frontal node strength 5.570 (0.51) 5.639 (0.49) 5.498 (0.54)

frontal path length 1.215 (0.05) 1.208 (0.05) 1.222 (0.06)

frontal clustering coefficient 0.218 (0.01) 0.220 (0.01) 0.217 (0.02)

frontal betweenness centrality 96.090 (11.52) 94.659 (9.98) 97.594 (12.89)

frontal interhemispheric participation 0.255 (0.03) 0.258 (0.02) 0.252 (0.03)

temporal node degree 14.335 (0.78) 14.665 (0.61) 13.987 (0.79)

temporal node strength 5.019 (0.43) 5.154 (0.39) 4.876 (0.43)

temporal path length 1.303 (0.06) 1.287 (0.05) 1.319 (0.06)

temporal clustering coefficient 0.251 (0.01) 0.253 (0.01) 0.250 (0.01)

temporal betweenness centrality 36.332 (6.03) 35.696 (5.78) 37.000 (6.30)

temporal interhemispheric participation 0.050 (0.02) 0.055 (0.02) 0.045 (0.02)

Table 6.7: Frontal and temporal network metrics in normal ageing. Means are shown first with

standard deviations in parenthesis.

subjects). Although, our male subjects showed a decline in white matter volume with age, this

change did not survive a correction for multiple comparisons. We note that more sophisticated

analyses of structure could be undertaken using techniques, such as voxel-based morphometry

(Ashburner and Friston, 2000). However, as structural imaging was not the main focus of our

study, this was not pursued.

The absence of a significant decline in white matter integrity in our analyses was surprising.

We emphasise that no age-related change in FA was found in total cerebral white matter (Ta-

ble 6.6), or by the TBSS voxel-based analysis, or by the NBS network analysis, even when

using gender as a covariate. Therefore, we conclude that for this cohort there is no detectable

change in white matter integrity due to age. This was unexpected when considering that age-

related declines in FA, particularly in frontal brain areas, have been identified consistently by

dMRI studies of normal ageing (Sullivan and Pfefferbaum, 2006). Previous dMRI studies of

network connectivity in normal ageing have shown age-related changes, especially in very old

age (Gong et al., 2009a; Robinson et al., 2010; De Boer et al., 2010).

However, the graph-theoretic network analysis did show an age-related decline in the mean

betweenness centrality for the male subjects (Table 6.2, uncorrected). Betweenness centrality

is a measure of node centrality, which measures the proportion of all shortest (weighted) paths

in the network that traverse through a given node. Nodes with high betweenness centrality

participate in a large number of shortest paths and researchers have made use of it to identify

hub nodes within a network (Gong et al., 2009a; Yan et al., 2011). A decline in the mean be-

tweenness centrality could indicate that the overall influence of hub nodes declines with age.

Notably, Zhu et al. (2012) found that the betweenness centrality of certain nodes changed sig-
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Network property N=80 Female (N=41) Male (N=39)

r p r p r p

frontal node degree 0.188 0.095 0.106 0.511 0.270 0.097

frontal node strength 0.084 0.457 -0.021 0.894 0.195 0.234

frontal path length -0.005 0.967 0.083 0.605 -0.102 0.538

frontal clustering coefficient 0.019 0.867 -0.121 0.451 0.157 0.340

frontal betweenness centrality -0.152 0.179 -0.051 0.749 -0.255 0.117

frontal interhemispheric participation -0.101 0.373 -0.149 0.352 -0.053 0.747

temporal node degree 0.112 0.323 0.023 0.884 0.176 0.283

temporal node strength -0.069 0.540 -0.104 0.518 -0.024 0.886

temporal path length 0.000 0.997 0.050 0.754 -0.056 0.735

temporal clustering coefficient -0.042 0.710 -0.088 0.585 0.032 0.846

temporal betweenness centrality 0.154 0.172 0.124 0.441 0.182 0.267

temporal interhemispheric participation 0.157 0.164 0.048 0.766 0.228 0.162

Table 6.8: Correlations between the mean lobar network properties and age using Pearson’s

correlation coefficient for frontal and temporal lobes.

Hypothesis p t-stat

H1: network-weighting increases with age 0.2388 0.2

H1: network-weighting decreases with age 0.0648 0.4

Table 6.9: Results of hypothesis testing on age using NBS. In each case, the p and t-stat shown

correspond to the most significant network obtained by NBS for the range of t-stat thresholds

tested.

Hypothesis p t-stat

H1: network-weighting increases with age, when controlled for gender 0.2302 0.2

H1: network-weighting decreases with age, when controlled for gender 0.0548 0.4

H1: network-weighting is greater in men, when controlled for age 0.1356 0.2

H1: network-weighting is greater in women, when controlled for age 0.2002 0.2

H1: age has a greater effect on network-weighting than gender 0.2560 0.2

H1: gender has a greater effect on network-weighting than age 0.1364 0.2

Table 6.10: Results of hypothesis testing based on gender and age using NBS. In each case,

the p and t-stat shown correspond to the most significant network obtained by NBS for the range

of t-stat thresholds tested.
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nificantly with age in a structural inter-regional correlation study (Zhu et al., 2012). However,

bearing in mind that for our study the statistic for mean betweenness centrality does not survive

a correction for multiple comparisons, and is not seen at all in the female subjects, we should

not draw any clear conclusions about node centrality from our data.

It is worth noting the differences between the TBSS and NBS approaches. Note that TBBS is

performed independently of tractography and network analysis, and therefore is not affected

by problems associated with network construction. TBSS can be considered a conservative

technique as only certain primary white matter areas are assessed. Arguably, the difference

in p-values between the TBSS and NBS analysis may indicate that NBS at the network level

is more sensitive (or perhaps speculative) to alterations in connectivity between cortical areas

than TBSS.

There are a number of reasons our method failed to reveal any expected changes due to age. Our

cohort does not include subjects older than 64 years of age. However, only after about 70 years

of age do studies show pronounced declines in white matter volume and integrity (Pfefferbaum

et al., 2005; Salat et al., 2005; Sullivan et al., 2006). In contrast to neurodegenerative disease or

brain injury, the effects of normal ageing are subtle and occur gradually. Crucially, there is no

evidence of severed axonal fibres occurring due to normal ageing (Sullivan and Pfefferbaum,

2006). Age-related white matter changes are thought to be small, gradual and typically without

lesions for normal ageing. As a result, the locus of cognitive decline may be challenging

to detect with conventional MRI analysis. Also, it is possible that our current techniques in

dMRI, tractography or network construction result in a signal-to-noise ratio below that required

to observe the expected alterations in normal ageing.

6.8 Conclusions

This chapter presented an analysis of brain structure, white matter integrity and network con-

nectivity in a group of volunteers undergoing normal ageing. Whole-brain networks were

constructed using a validated approach with strong constraints on the anatomical plausibility

of tracts. While a significant age-related decline in grey matter volume was found from struc-

tural MRI, consistent with the literature of brain ageing, there were no meaningful brain-wide

impairments due to ageing found by a voxel-based analysis of white matter integrity or at any

level of network analysis. However, network analysis when corrected for gender did find a

trend level decline in white matter connectivity between temporal nodes in the left hemisphere,

but this was not found to be significant. The lack of evidence for white matter changes due to

ageing is unexpected. However, it is possible that our current techniques in network construc-

tion are too limited to observe the relatively subtle changes due to normal ageing.
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One conclusion that we can draw from these results is that for healthy subjects younger than 65

years of age, cortical volume is a more sensitive indicator of age-related changes in the brain

than any of the measures of white matter integrity that was assessed. However, for subjects

older than 70 years of age we would expect to observe measurable changes in white matter

connectivity, especially in frontal and temporal regions (Pfefferbaum et al., 2005; Salat et al.,

2005) and at the network level as reported in the literature (Gong et al., 2009a; Robinson

et al., 2010; De Boer et al., 2010). Ultimately, improvements in the signal-to-noise of network

approaches may increase the power of analyses assessing network properties and cognitive

impairment. These analyses could be key to understanding the structure-function relationship

in both normal and abnormal ageing.
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Discussion and conclusions

7.1 Overview

This chapter presents a discussion of the findings from the preceding results chapters. We

focus on the relative advantages and limitations of a network approach based on the described

techniques and cohorts, and we attempt to place in context our findings from the evaluation of

these methods. This is followed by a discussion of the current challenges facing connectome

approaches and suggestions for future work. Finally, we conclude with some final remarks.

7.2 Summary of findings

We evaluated several key steps and representations in the construction of structural networks

using repeat scans of healthy volunteers. To our knowledge, this work was the first to directly

compare probabilistic and deterministic tractography and alternative seeding strategies in a

test-retest network analysis. Although a small sample was used in the test-retest study, our

findings showed that global network measures were estimated reliably, but there were concerns

about the reliability of nodal measures. We obtained broadly similar results to previous test-

retest analyses (Hagmann et al., 2008; Vaessen et al., 2010; Bassett et al., 2010; Cammoun

et al., 2011; Cheng et al., 2012a). Although reliability has been assessed in various ways,

these studies indicate that, globally, the between-subject variation is typically greater than the

within-subject variation. To our knowledge, the test-retest study (Buchanan et al., 2014a) was

amongst the first to quantify the reliability of nodal network properties. Our findings indicated

that connections to some nodes were computed unreliably from session to session. For some

network connections, the measurement noise could be greater than the genuine signal. Notably,

a more recent study made similar findings on the reliability of nodal measures (Andreotti et al.,

135
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2014).

The comparison of tractography algorithms, seeding approaches and network weightings of-

fered some insights into appropriate methods of network construction. In all the cases assessed,

white matter seeding produced networks with better test-retest reliability than grey matter seed-

ing, in terms of the mean ICC measuring node strength. We believe some grey matter seeding

error may arise because all grey matter voxels were included, even those unlikely to interface

with white matter, potentially resulting in a greater proportion of spurious streamlines. Overall,

the probabilistic tractography algorithm produced better test-retest performance than the deter-

ministic method. This was perhaps due to the limited sample of possible streamlines produced

by the deterministic method. Deterministic methods are known to be somewhat simplistic,

leading to inherent tracking artefacts (Wiegell et al., 2000; Tuch et al., 2002). In addition, we

determined that in the not uncommon case a streamline passes through multiple ROIs before

terminating, a definition of endpoint connectivity which considered the first ROI encountered

was the most reliable, when compared to absolute endpoints or complete connectivity between

ROIs along the streamline. Streamline termination is a well-known weakness of current trac-

tography techniques (Jbabdi and Johansen-Berg, 2011) and there is no means to prevent some

streamlines from either ending prematurely or extending past the true endpoint. Note that the

above findings were made with a small sample and further analysis may be required to test

these points.

Following evaluation of network methods, we applied network analysis to an ALS cohort in

a case-control study and to a cross-sectional study of normal ageing. To our knowledge, this

work was the first to utilise probabilistic tractography and model multiple fibre populations

in a network analysis of ALS. The key findings from the network analysis of ALS were that

while there were no brain-wide impairments in connectivity due to ALS, there was an impaired

motor-frontal-subcortical network of reduced white matter integrity in the ALS patients. The

connections involved in the network analysis had a strong correspondence with tracts identified

by a conventional TBSS analysis of the same data. Reduced white matter integrity in three of

the impaired network connections, which involve fibres of the cortico-spinal tract, correlated

with the rate of disease progression. However, no convincing white matter impairments were

found in several frontal areas believed to be associated with FTD in ALS. It could be that

the limitations of the data and methods mean that the resulting network analysis is not sensi-

tive enough to detect the structural changes thought to be associated with FTD and cognitive

impairment.

In addition, it is worth noting that a preliminary case-control analysis was also performed in

a cohort of Multiple Sclerosis (MS) patients using the same set of network methods (findings

not published). These analyses showed widespread global changes in white matter connec-
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tivity, broadly compatible with demyelination and white matter impairment reported in MS

(Kutzelnigg et al., 2005). However, localising these alterations in network connectivity using

NBS proved to be problematic. In the case of such widespread white matter changes, network

analysis may not be especially appropriate.

Concerning analyses of normal ageing, no age-related change in FA was found in total cerebral

white matter, or by a TBSS voxel-based analysis, or by a NBS network analysis. Undoubtedly,

the effects of ageing on white matter are more subtle than changes associated with neurodegen-

erative disorders such as ALS or MS. We note that using NBS, the t-statistics observed in the

analysis of ageing (Table 6.9) are small and far below those observed in the ALS analysis (Ta-

ble 5.3). Indeed, age-related white matter changes are thought to be small until the formation

of white matter lesions in advanced age (Sullivan and Pfefferbaum, 2006). It is possible that

current techniques in dMRI, tractography or network construction result in a signal-to-noise

ratio below that required to observe the expected age-related alterations in brain organisation.

However, it was evident that the FA-weighted connectivity matrices and histograms of network

weights were near identical for both the ALS cohort (Figure 5.1) and the ageing cohort (Figure

6.2). Note that the cohorts span a similar age range. This suggests that, on average, global

patterns of structural connectivity are remarkably similar between subjects.

An important consideration is the type of network weighting. We chose to use FA-weighted

networks for both the ALS and ageing cohorts. Although FA-weighting provided marginally

poorer test-retest reliability than the SD-weighting at the global and nodal network level, there

are concerns about the ROI volume correction on SD-weighting, which may unduly bias a

group contrast. Some researchers have suggested that ROI volume correction may overcom-

pensate for volume-driven effects on streamline counts (Van Den Heuvel and Sporns, 2011).

Such weightings may be affected by between-subject differences in tissue volume rather than

streamline density. It is not clear how such effects may be counteracted to allow representa-

tive comparison of connectivity between individuals. We believe that FA is a more appropriate

measure of between-subject connectivity as it somewhat circumvents the need for correction

by ROI size and it is thought to reflect aspects of the underlying integrity of white matter.

In the test-retest analysis, we sought to understand network reliability without applying ar-

bitrary thresholds on network weights. However, given the proportion of false streamlines

observed, we found it necessary to apply stronger constraints for the ALS and ageing cohorts.

These constraints focussed on thresholding of network weights. Thresholding resulted in dis-

carding the lowest 25% of network weights per subject and only retaining connections which

occurred in the majority of subjects.
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7.3 Strengths and limitations

Network analysis has the potential to localise pathways of connectivity at a macroscopic reso-

lution. In comparison to conventional voxel-based or ROI-based analyses, many thousands of

connections can be identified with high-throughput network methods. However, the application

of network resolution was not especially revealing for our analyses, perhaps with the exception

of the connection between left paracentral and left superior frontal gyrus identified by the ALS

NBS analysis (Figure 5.2), which was not identified by TBSS. It could be argued that there is

little justification for using a complex set of network methods, with many sources of potential

error, over simpler and well-defined techniques such as TBSS, if no further information on

localisation can be obtained. On the other hand, we believe that as dMRI acquisitions and im-

age processing techniques improve, network analysis will permit higher resolution probing of

connectivity than by spatially limited approaches, such as TBSS. Additionally, in comparison

to TBSS or other template-space analyses, network analysis is computed in native space rather

than standard space, thereby accounting for individual differences in white matter structure and

providing a more representative reconstruction of the underlying axonal wiring.

The most concerning aspect of the described network methods is the apparent lack of reli-

ability and repeatability in computing certain regional network properties. Some test-retest

variation may be due to scanner noise and inhomogeneities between sessions and some may

be due to systematic variation in processing. Evidently, many intermediate but fundamental

steps are involved in generating structural networks from dMRI data. The variability at each

step contributes to the errors in the following stage and in the resulting measures of connectiv-

ity. As discussed in Chapter 4, network measures are dependent on reliable registration, node

segmentation, diffusion processing and tractography.

As with many neuroimaging analyses, network approaches rely on accurate registration of

image volumes. Accurate alignment of neuroanatomical nodes with diffusion data is an open

research problem (Klein et al., 2009). We observed that registration error of even one voxel can

disrupt the correct mapping of fibres. Nonlinear (deformable) transforms improve local align-

ment (over linear transforms) particularly in cortical regions, though several regions remain

susceptible to errors in alignment.

EPI suffers from inherent geometric distortions from magnetic field inhomogeneities due to the

rapid sampling of the gradient echo train. There are some principled methods to reduce these

distortions, at least in part (Jones et al., 2013). For certain applications these distortions may

be tolerable. However, we believe these distortions are a problem for whole-brain quantitative

studies which must rely in mapping diffusion data to specific anatomical ROIs. In this work, it

was apparent that such distortions can adversely affect the proper registration between dMRI
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and T1-weighted data.

Concerning thresholding of network weights, it is problematic to ensure that an arbitrary thresh-

old removes spurious connections while retaining genuine patterns of connectivity. Implausible

streamlines like those illustrated in Figure 4.18, highlight serious concerns about the tractogra-

phy configuration used. In this particular case false streamlines were eliminated by discarding

any bilateral cortico-subcortical connections. However, there were many other network con-

nections for which similarly questionable streamlines were observed. To our knowledge, there

is no means to entirely reject implausible streamlines because of the lack of complete ground-

truth data for white matter connectivity. Thresholding has previously been reported to have a

dramatic effect on the amount of false positive and false negative connections and the resulting

measures of connectivity (van Wijk et al., 2010; de Reus and van den Heuvel, 2013). As a

result, any application of current network methods must be used with caution and should ac-

count for a proportion of spurious streamlines remaining, even after network thresholding. We

believe that the two-step thresholding procedure used in this study eliminates a proportion of

implausible connections without biasing the results of a group-wise analysis. However, due to

the limitations of current dMRI and tractography techniques it is not possible to eliminate all

false connections. This highlights the need for even more stringent constraints and priors on

dMRI data and tractography.

NBS has proved useful in mass univariate testing of network connections by exploiting the

connectedness of network components to improve statistical power. Unfortunately, as noted by

the authors of NBS, network analysis requires selecting an arbitrary threshold on the t-statistics

which then affects the extent of any observed network (Zalesky et al., 2010a). However, Smith

and Nichols (2009) suggest an alternative threshold-free approach for a similar mass univariate

test, which merits further investigation in the network analysis setting.

Another crucial aspect of analysis is the sample size. One strength of this study is the relatively

large and well-characterised patient samples for both the ALS and normal ageing cohorts. In

contrast, we have noted the limitation of the small sample size used in the test-retest analysis.

In some cases, this has made it difficult to draw clear conclusions about the effect of the dif-

ferent steps used in network construction. Our work (Buchanan et al., 2014a) and other recent

research (Liem et al., 2014) point towards the benefit of using large cohorts.

7.4 Challenges and Future Work

As our findings indicate, there are many avenues for future improvements in connectome tech-

nologies. For instance, improvements in neuroanatomical segmentation, registration, fibre ori-
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Figure 7.1: Coronal slices of FA and colour-encoded principal diffusion direction images from

the Human Connectome Project dMRI data, compared with a conventional 2 mm data set of a

different subject. (Adapted from Van Essen et al. 2013.)

entation estimation, tractography and post-processing methods will undoubtedly lead to re-

duced artefacts and improve the signal-to-noise of the resulting network measures.

MRI acquisition, field strength, spatial resolution and angular resolution are crucial factors.

Many studies have demonstrated useful network connectivity gathered at 3 T and several stud-

ies have shown useful results with appropriate acquisition at 1.5 T. However, our findings

suggest that methods at 1.5 T have limitations in detecting population differences in case-

control or cross-sectional studies. We believe that high-resolution dMRI acquisitions could be

hugely beneficial to future connectome analyses. For example, the state-of-the-art acquisitions

and dMRI processing techniques developed within the Human Connectome Project (Van Essen

et al., 2013), as illustrated in Figure 7.1, may lead to more convincing macroscale connectomes.

Until recently most network studies have been acquired with DTI, despite its known limita-

tions. There has been a gradual shift towards more complex acquisitions, such as HARDI and

DSI, for which the fibre crossing problem becomes more tractable. Vaessen et al. (2010) as-

sessed reproducibility over different sets of diffusion gradient directions using DTI. Bassett

et al. (2010) compared reliability in both DTI and DSI. Zalesky et al. (2010b) investigated the

effect of network resolution using DTI and high-angular resolution. Cammoun et al. (2011)

investigated the effect of network resolution using DSI. These studies indicate that networks

can be estimated from various dMRI data, but that richer and higher-resolution acquisitions

seem more in agreement with the underlying white matter connectivity. Over time, higher
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resolution imaging will permit characterisation of cerebral structures at sub-millimetre scales.

However, all acquisitions have inherent limits and reconstruction errors are inescapable. Re-

searchers have shown that, in general, it is preferable to use isotropic voxels to minimise partial

voluming effects or any bias arising from using a through-plan dimension much smaller than

the in-plane voxel size (Jones et al., 2002).

An appropriate definition of network nodes is essential but far from trivial (Hagmann et al.,

2010a; Zalesky et al., 2010b). Zalesky et al. (2010b) showed that the estimates of various or-

ganisational parameters such as clustering, path length, and efficiency were consistent across

different parcellation scales at the same resolution, i.e. the same number of nodes. However,

these parameters vary considerably as a function of spatial scale. Their findings indicate that

any comparison of network parameters across studies must be made with reference to the spa-

tial scale of the parcellation. For current network methods affected by noise, a compromise

must be made between network resolution and an acceptable level of measurement noise. If

issues with the reliability of nodal measures and individual network connections cannot eas-

ily be overcome with richer clinical data then low-resolution lobar networks, in the manner of

Cabeen et al. (2013), may be less susceptible to the errors of individual nodes. In addition, it is

not clear if anatomical divisions of the cortex, such as the sulcal and gyral boundaries used by

FreeSurfer, or functional subdivisions are more appropriate for the the connectome mapping

task (Hagmann et al., 2010a).

Methods in tractography are critical to understanding structural connectivity and the techniques

have advanced steadily since the conception of tractography. We demonstrated that probabilis-

tic tractography and a two fibre model performed better than the deterministic method used,

in terms of the mean ICC for node strength. We believe this is because probabilistic methods

should be able to account for branching and crossing fibres, in comparison to deterministic

tractography. However, due to limitations of dMRI data, it is not possible to eliminate multi-

fibre problems altogether, as illustrated in Figure 4.18. It remains unclear how to select the

optimal fibre reconstruction method. Fillard et al. (2011) suggested that for medium or low

signal-to-noise datasets, an appropriate prior on the spatial smoothness of either the diffusion

model or the fibres is recommended for correct modelling. This merits further investigation.

There is a need to simplify and standardise the gathering, storage and analysis of connectome

data. Tools such as the brain connectivity toolbox (Rubinov and Sporns, 2010), NBS (Zalesky

et al., 2010a) and the Connectome Mapping Toolkit (Gerhard et al., 2011) are beginning to pro-

vide researchers with the necessary tools for analysing and visualising networks. Ultimately,

as network methods become accepted and integrated this may facilitate answering fundamental

neuroscientific questions relating to healthy and pathological brain organisation. Developments

from other network sciences, such as biology and social science, may also provide inspiration.
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As mentioned in Chapter 2, meaningful visualisation of networks remains an open problem.

There is a need to visualise thousands of network connections coherently without losing essen-

tial information.

Another important, but largely missing, aspect of connectome mapping is a robust set of tools

to validate the resulting networks and prevent the generation of unreliable data, i.e. in the case

that no data is better than erroneous data. As with all neuroimaging analyses, it is crucial to

inspect data at intermediate stages and if necessary reject the outcome. Typically, checks of data

are performed manually, but there is an incentive to develop a set of automated and objective

measures in order to achieve this. There is a pressing need to validate tractography results

against the underlying axonal ground-truths, as some researchers have previously addressed

in part (Dyrby et al., 2007; Hagmann et al., 2008). A full and proper characterisation of this

anatomical knowledge may lead to more appropriate tractography methods and constraints.

Ultimately, with sufficient prior knowledge, any network found to deviate from population

norms could be treated with caution and possibly rejected from subsequent analysis.

7.5 Concluding remarks

This thesis presented methods for constructing white matter structural networks from MRI

data. We sought to determine whether genuine patterns of connectivity can be identified de-

spite noisy measurements. Our key findings were: 1) Probabilistic tractography was found to

perform better than a deterministic method; 2) Performance was improved when seeding from

white matter, rather than grey. 3) Thresholding of network weights must be applied with cau-

tion in order to remove spurious connections while retaining genuine patterns of connectivity.

Our findings suggest that current connectome mapping techniques (at 1.5 T) are adequate for

reliably measuring global network measures. However, regional network measures may not

be as reliable, leading to concerns about the validity of studies based on such measures par-

ticularly with small sample sizes. We recommend that future dMRI network studies use large

samples of ideally more than 50 subjects. Whilst current network methods are capable of char-

acterising the genuine between-subject differences in connectivity, it is challenging to measure

subtle white matter changes, for example, due to normal ageing.

We conclude that there are many future challenges facing connectome mapping technologies

and future work should be undertaken to address these concerns. Future improvements to

acquisitions and methods are likely to achieve network resolutions of many thousands of nodes,

marking a shift from the macroscopic to the microscopic scale. Ultimately, these developments

are likely to be a benefit to the understanding of the structure-function relationship and the

basis of neural connectivity.
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List of grey matter structures

A.1 Sub-cortical regions

List of sub-cortical regions (all entries except brain stem have left/right hemisphere counter-
parts):

Region Abbreviation

Brain stem BS

Thalamus Tha

Caudate Cau

Putamen Put

Pallidum Pal

Hippocampus Hip

Amygdala Amy

Accumbens-area Acc

Ventral-diencephalon VDC

A.2 Desikan-Killiany cortical regions

List of 34 cortical regions (all entries have left/right hemisphere counterparts):

143



144 Appendix A. List of grey matter structures

Region Abbreviation Lobe

Banks of superior temporal sulcus BST temporal

Caudal anterior cingulate CAC cingulate

Caudal middle frontal CMF frontal

Cuneus Cun occipital

Entorhinal Ent temporal

Fusiform Fus temporal

Inferior parietal IP parietal

Inferior temporal IT temporal

Isthmus cingulate IC cingulate

Lateral occipital LA occipital

Lateral orbitofrontal LAF frontal

Lingual Lin occipital

Medial orbitofrontal MOF frontal

Middle temporal MT temporal

Parahippocampal PH temporal

Paracentral PaC frontal

Pars opercularis POp frontal

Pars orbitalis POr frontal

Pars triangularis PT frontal

Pericalcarine Per occipital

Postcentral PCe parietal

Posterior cingulate PCi cingulate

Precentral PrC frontal

Precuneus Pre parietal

Rostral anterior cingulate RAC cingulate

Rostral middle frontal RMF frontal

Superior frontal SF frontal

Superior parietal SP parietal

Superior temporal ST temporal

Supramarginal SM parietal

Frontal pole FP frontal

Temporal pole TP temporal

Transverse temporal TT temporal

Insula Ins -
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(2010b). Whole-brain anatomical networks: does the choice of nodes matter? NeuroImage,
50(3):970–983.

Zalesky, A., Fornito, A., Seal, M. L., Cocchi, L., Westin, C.-F., Bullmore, E. T., Egan, G. F.,
and Pantelis, C. (2011). Disrupted axonal fiber connectivity in schizophrenia. Biological
Psychiatry, 69(1):80–89.

Zhu, W., Wen, W., He, Y., Xia, A., Anstey, K. J., and Sachdev, P. (2012). Changing topolog-
ical patterns in normal aging using large-scale structural networks. Neurobiology of Aging,
33:899–913.


	cover sheet
	s0454291_PhD_thesis-Structural brain networks from diffusion MRI methods and application
	1 Introduction
	1.1 Notation and terminology

	2 Background
	2.1 Overview
	2.2 Organisation of the brain
	2.2.1 Neuroanatomy

	2.3 Magnetic resonance imaging
	2.3.1 Basic principles of magnetic resonance
	2.3.2 T1-weighted imaging
	2.3.3 T2-weighted imaging
	2.3.4 Echo-planar imaging

	2.4 Diffusion MRI
	2.4.1 Diffusion and thermodynamics
	2.4.2 Diffusion acquisition
	2.4.3 The diffusion tensor model
	2.4.4 Diffusion parameters
	2.4.5 The multi-fibre problem
	2.4.6 Other dMRI acquisitions

	2.5 Tractography
	2.5.1 Deterministic streamline tractography
	2.5.2 Probabilistic tractography
	2.5.3 Other approaches
	2.5.4 Region-of-interest tractography
	2.5.5 Validation
	2.5.6 Subjectivity of tractography

	2.6 The connectome
	2.6.1 The mesoscopic scale
	2.6.2 The macroscopic scale
	2.6.3 Summary of dMRI connectome studies
	2.6.4 Comparison to other techniques in dMRI

	2.7 Methods of network construction
	2.7.1 MRI acquisition
	2.7.2 Tractography algorithms
	2.7.3 Registration
	2.7.4 Definitions of connectivity

	2.8 Network theory
	2.9 Network visualisation
	2.10 Network analysis
	2.11 Networks of the brain
	2.12 Relation between brain structure and function
	2.13 Critique of current techniques
	2.14 Motivation

	3 Methods
	3.1 Overview
	3.2 MRI acquisition
	3.3 Neuroanatomical segmentation
	3.3.1 Cortical atlases
	3.3.2 Mask construction

	3.4 Diffusion processing
	3.5 Registration
	3.5.1 Linear registration
	3.5.2 Nonlinear registration
	3.5.3 Resampling

	3.6 Tractography
	3.6.1 Deterministic tensor tractography
	3.6.2 Probabilistic tractography
	3.6.3 Seeding
	3.6.4 Termination criteria
	3.6.5 Streamline post-processing
	3.6.6 Streamline density

	3.7 Network construction
	3.7.1 Streamline connectivity
	3.7.2 The adjacency matrix
	3.7.3 Network weighting

	3.8 Network properties
	3.8.1 Thresholding
	3.8.2 Basic properties
	3.8.3 The distance matrix
	3.8.4 Measures of integration
	3.8.5 Measures of segregation
	3.8.6 Measures of centrality
	3.8.7 Measures of modularity
	3.8.8 The small-world property

	3.9 Network-based statistics
	3.10 Summation

	4 Network test-retest analysis
	4.1 Overview
	4.2 Participants
	4.3 Network construction
	4.3.1 Network measures
	4.3.2 Thresholding of network weights

	4.4 Test-retest statistics
	4.4.1 The intraclass correlation coefficient
	4.4.2 Estimating within- and between-subject variation

	4.5 Test-retest variability at intermediate steps
	4.5.1 Segmentation agreement
	4.5.2 Registration agreement
	4.5.3 Tract density agreement

	4.6 Results
	4.6.1 Evaluation of neuroanatomical segmentation
	4.6.2 Evaluation of registration
	4.6.3 Evaluation of streamline-density agreement
	4.6.4 Regional variation in reliability
	4.6.5 Comparison of tractography configurations
	4.6.6 Networks
	4.6.7 Global network reliability
	4.6.8 Regional network reliability
	4.6.9 Thresholding of network weights

	4.7 Discussion
	4.7.1 Relationship to previous work
	4.7.2 Network reliability
	4.7.3 Sources of test-retest variation
	4.7.4 Limitations of study
	4.7.5 Conclusions


	5 Brain networks in amyotrophic lateral sclerosis
	5.1 Overview
	5.2 Amyotrophic lateral sclerosis
	5.2.1 Previous MRI studies

	5.3 Participants
	5.4 Network construction
	5.5 Statistical analysis
	5.5.1 Network analysis
	5.5.2 Tract-based spatial statistics
	5.5.3 Comparison between network analysis and TBSS

	5.6 Results
	5.6.1 Participants
	5.6.2 Network analysis
	5.6.3 Comparison of network analysis to TBSS
	5.6.4 Impaired connectivity correlates of disease state

	5.7 Discussion
	5.7.1 Strengths and limitations

	5.8 Conclusions

	6 Brain networks in normal ageing
	6.1 Overview
	6.2 The Ageing Brain
	6.2.1 Cognitive ageing
	6.2.2 Structural changes
	6.2.3 White matter changes
	6.2.4 Networks in ageing

	6.3 Participants
	6.4 Network construction
	6.5 Statistical analysis
	6.5.1 Volumetric analysis
	6.5.2 Tract-based spatial statistics
	6.5.3 Network analysis

	6.6 Results
	6.6.1 Volumetric analysis
	6.6.2 Tract-based spatial statistics
	6.6.3 Network analysis

	6.7 Discussion
	6.8 Conclusions

	7 Discussion and conclusions
	7.1 Overview
	7.2 Summary of findings
	7.3 Strengths and limitations
	7.4 Challenges and Future Work
	7.5 Concluding remarks

	A List of grey matter structures
	A.1 Sub-cortical regions
	A.2 Desikan-Killiany cortical regions

	Bibliography


