12,686 research outputs found

    An immune algorithm based fuzzy predictive modeling mechanism using variable length coding and multi-objective optimization allied to engineering materials processing

    Get PDF
    In this paper, a systematic multi-objective fuzzy modeling approach is proposed, which can be regarded as a three-stage modeling procedure. In the first stage, an evolutionary based clustering algorithm is developed to extract an initial fuzzy rule base from the data. Based on this model, a back-propagation algorithm with momentum terms is used to refine the initial fuzzy model. The refined model is then used to seed the initial population of an immune inspired multi-objective optimization algorithm in the third stage to obtain a set of fuzzy models with improved transparency. To tackle the problem of simultaneously optimizing the structure and parameters, a variable length coding scheme is adopted to improve the efficiency of the search. The proposed modeling approach is applied to a real data set from the steel industry. Results show that the proposed approach is capable of eliciting not only accurate but also transparent fuzzy models

    A hybrid swarm-based algorithm for single-objective optimization problems involving high-cost analyses

    Full text link
    In many technical fields, single-objective optimization procedures in continuous domains involve expensive numerical simulations. In this context, an improvement of the Artificial Bee Colony (ABC) algorithm, called the Artificial super-Bee enhanced Colony (AsBeC), is presented. AsBeC is designed to provide fast convergence speed, high solution accuracy and robust performance over a wide range of problems. It implements enhancements of the ABC structure and hybridizations with interpolation strategies. The latter are inspired by the quadratic trust region approach for local investigation and by an efficient global optimizer for separable problems. Each modification and their combined effects are studied with appropriate metrics on a numerical benchmark, which is also used for comparing AsBeC with some effective ABC variants and other derivative-free algorithms. In addition, the presented algorithm is validated on two recent benchmarks adopted for competitions in international conferences. Results show remarkable competitiveness and robustness for AsBeC.Comment: 19 pages, 4 figures, Springer Swarm Intelligenc

    Distributionally Robust Joint Chance-Constrained Optimization for Networked Microgrids Considering Contingencies and Renewable Uncertainty

    Get PDF
    In light of a reliable and resilient power system under extreme weather and natural disasters, networked microgrids integrating local renewable resources have been adopted extensively to supply demands when the main utility experiences blackouts. However, the stochastic nature of renewables and unpredictable contingencies are difficult to address with the deterministic energy management framework. The paper proposes a comprehensive distributionally robust joint chance-constrained (DR-JCC) framework that incorporates microgrid island, power flow, distributed batteries and voltage control constraints. All chance constraints are solved jointly and each one is assigned to an optimized violation rate. To highlight, the JCC problem with the optimized violation rates has been recognized to be NP-hard and challenging to be solved. This paper proposes a novel evolutionary algorithm that successfully tackles the problem and reduces the solution conservativeness (i.e. operation cost) by around 50% comparing with the baseline Bonferroni Approximation. Considering the imperfect solar power forecast, we construct three data-driven ambiguity sets to model uncertain forecast error distributions. The solution is thus robust for any distribution in sets with the shared moment and shape assumptions. The proposed method is validated by robustness tests based on those sets and firmly secures the solution robustness.Comment: Accepted by IEEE Transactions on Smart Gri
    corecore