31 research outputs found

    Characterising pattern asymmetry in pigmented skin lesions

    Get PDF
    Abstract. In clinical diagnosis of pigmented skin lesions asymmetric pigmentation is often indicative of melanoma. This paper describes a method and measures for characterizing lesion symmetry. The estimate of mirror symmetry is computed first for a number of axes at different degrees of rotation with respect to the lesion centre. The statistics of these estimates are the used to assess the overall symmetry. The method is applied to three different lesion representations showing the overall pigmentation, the pigmentation pattern, and the pattern of dermal melanin. The best measure is a 100% sensitive and 96% specific indicator of melanoma on a test set of 33 lesions, with a separate training set consisting of 66 lesions

    Diagnostic Significance of Exosomal miRNAs in the Plasma of Breast Cancer Patients

    Get PDF
    Poster Session AbstractsBackground and Aims: Emerging evidence that microRNAs (miRNAs) play an important role in cancer development has opened up new opportunities for cancer diagnosis. Recent studies demonstrated that released exosomes which contain a subset of both cellular mRNA and miRNA could be a useful source of biomarkers for cancer detection. Here, we aim to develop a novel biomarker for breast cancer diagnosis using exosomal miRNAs in plasma. Methods: We have developed a rapid and novel isolation protocol to enrich tumor-associated exosomes from plasma samples by capturing tumor specific surface markers containing exosomes. After enrichment, we performed miRNA profiling on four sample sets; (1) Ep-CAM marker enriched plasma exosomes of breast cancer patients; (2) breast tumors of the same patients; (3) adjacent non-cancerous tissues of the same patients; (4) Ep-CAM marker enriched plasma exosomes of normal control subjects. Profiling is performed using PCR-based array with human microRNA panels that contain more than 700 miRNAs. Results: Our profiling data showed that 15 miRNAs are concordantly up-regulated and 13 miRNAs are concordantly down-regulated in both plasma exosomes and corresponding tumors. These account for 25% (up-regulation) and 15% (down-regulation) of all miRNAs detectable in plasma exosomes. Our findings demonstrate that miRNA profile in EpCAM-enriched plasma exosomes from breast cancer patients exhibit certain similar pattern to that in the corresponding tumors. Based on our profiling results, plasma signatures that differentiated breast cancer from control are generated and some of the well-known breast cancer related miRNAs such as miR-10b, miR-21, miR-155 and miR-145 are included in our panel list. The putative miRNA biomarkers are validated on plasma samples from an independent cohort from more than 100 cancer patients. Further validation of the selected markers is likely to offer an accurate, noninvasive and specific diagnostic assay for breast cancer. Conclusions: These results suggest that exosomal miRNAs in plasma may be a novel biomarker for breast cancer diagnosis.link_to_OA_fulltex

    The University of Iowa General Catalog 2016-17

    Get PDF

    The University of Iowa 2018-19 General Catalog

    Get PDF

    The University of Iowa 2017-18 General Catalog

    Get PDF

    The University of Iowa 2020-21 General Catalog

    Get PDF

    The University of Iowa 2019-20 General Catalog

    Get PDF

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp
    corecore