155 research outputs found

    Multispectral Palmprint Encoding and Recognition

    Full text link
    Palmprints are emerging as a new entity in multi-modal biometrics for human identification and verification. Multispectral palmprint images captured in the visible and infrared spectrum not only contain the wrinkles and ridge structure of a palm, but also the underlying pattern of veins; making them a highly discriminating biometric identifier. In this paper, we propose a feature encoding scheme for robust and highly accurate representation and matching of multispectral palmprints. To facilitate compact storage of the feature, we design a binary hash table structure that allows for efficient matching in large databases. Comprehensive experiments for both identification and verification scenarios are performed on two public datasets -- one captured with a contact-based sensor (PolyU dataset), and the other with a contact-free sensor (CASIA dataset). Recognition results in various experimental setups show that the proposed method consistently outperforms existing state-of-the-art methods. Error rates achieved by our method (0.003% on PolyU and 0.2% on CASIA) are the lowest reported in literature on both dataset and clearly indicate the viability of palmprint as a reliable and promising biometric. All source codes are publicly available.Comment: Preliminary version of this manuscript was published in ICCV 2011. Z. Khan A. Mian and Y. Hu, "Contour Code: Robust and Efficient Multispectral Palmprint Encoding for Human Recognition", International Conference on Computer Vision, 2011. MATLAB Code available: https://sites.google.com/site/zohaibnet/Home/code

    Deep learning approach for Touchless Palmprint Recognition based on Alexnet and Fuzzy Support Vector Machine

    Get PDF
    Due to stable and discriminative features, palmprint-based biometrics has been gaining popularity in recent years. Most of the traditional palmprint recognition systems are designed with a group of hand-crafted features that ignores some additional features. For tackling the problem described above, a Convolution Neural Network (CNN) model inspired by Alex-net that learns the features from the ROI images and classifies using a fuzzy support vector machine is proposed. The output of the CNN is fed as input to the fuzzy Support vector machine. The CNN\u27s receptive field aids in extracting the most discriminative features from the palmprint images, and Fuzzy SVM results in a robust classification. The experiments are conducted on popular contactless datasets such as IITD, POLYU2, Tongji, and CASIA databases. Results demonstrate our approach outperformers several state-of-art techniques for palmprint recognition. Using this approach, we obtain 99.98% testing accuracy for the Tongji dataset and 99.76 % for the POLYU-II datasets

    Enhanced CNN for image denoising

    Full text link
    Owing to flexible architectures of deep convolutional neural networks (CNNs), CNNs are successfully used for image denoising. However, they suffer from the following drawbacks: (i) deep network architecture is very difficult to train. (ii) Deeper networks face the challenge of performance saturation. In this study, the authors propose a novel method called enhanced convolutional neural denoising network (ECNDNet). Specifically, they use residual learning and batch normalisation techniques to address the problem of training difficulties and accelerate the convergence of the network. In addition, dilated convolutions are used in the proposed network to enlarge the context information and reduce the computational cost. Extensive experiments demonstrate that the ECNDNet outperforms the state-of-the-art methods for image denoising.Comment: CAAI Transactions on Intelligence Technology[J], 201

    Invariant Scattering Transform for Medical Imaging

    Full text link
    Invariant scattering transform introduces new area of research that merges the signal processing with deep learning for computer vision. Nowadays, Deep Learning algorithms are able to solve a variety of problems in medical sector. Medical images are used to detect diseases brain cancer or tumor, Alzheimer's disease, breast cancer, Parkinson's disease and many others. During pandemic back in 2020, machine learning and deep learning has played a critical role to detect COVID-19 which included mutation analysis, prediction, diagnosis and decision making. Medical images like X-ray, MRI known as magnetic resonance imaging, CT scans are used for detecting diseases. There is another method in deep learning for medical imaging which is scattering transform. It builds useful signal representation for image classification. It is a wavelet technique; which is impactful for medical image classification problems. This research article discusses scattering transform as the efficient system for medical image analysis where it's figured by scattering the signal information implemented in a deep convolutional network. A step by step case study is manifested at this research work.Comment: 11 pages, 8 figures and 1 tabl

    An Extensive Review on Spectral Imaging in Biometric Systems: Challenges and Advancements

    Full text link
    Spectral imaging has recently gained traction for face recognition in biometric systems. We investigate the merits of spectral imaging for face recognition and the current challenges that hamper the widespread deployment of spectral sensors for face recognition. The reliability of conventional face recognition systems operating in the visible range is compromised by illumination changes, pose variations and spoof attacks. Recent works have reaped the benefits of spectral imaging to counter these limitations in surveillance activities (defence, airport security checks, etc.). However, the implementation of this technology for biometrics, is still in its infancy due to multiple reasons. We present an overview of the existing work in the domain of spectral imaging for face recognition, different types of modalities and their assessment, availability of public databases for sake of reproducible research as well as evaluation of algorithms, and recent advancements in the field, such as, the use of deep learning-based methods for recognizing faces from spectral images

    Feature extraction and information fusion in face and palmprint multimodal biometrics

    Get PDF
    ThesisMultimodal biometric systems that integrate the biometric traits from several modalities are able to overcome the limitations of single modal biometrics. Fusing the information at an earlier level by consolidating the features given by different traits can give a better result due to the richness of information at this stage. In this thesis, three novel methods are derived and implemented on face and palmprint modalities, taking advantage of the multimodal biometric fusion at feature level. The benefits of the proposed method are the enhanced capabilities in discriminating information in the fused features and capturing all of the information required to improve the classification performance. Multimodal biometric proposed here consists of several stages such as feature extraction, fusion, recognition and classification. Feature extraction gathers all important information from the raw images. A new local feature extraction method has been designed to extract information from the face and palmprint images in the form of sub block windows. Multiresolution analysis using Gabor transform and DCT is computed for each sub block window to produce compact local features for the face and palmprint images. Multiresolution Gabor analysis captures important information in the texture of the images while DCT represents the information in different frequency components. Important features with high discrimination power are then preserved by selecting several low frequency coefficients in order to estimate the model parameters. The local features extracted are fused in a new matrix interleaved method. The new fused feature vector is higher in dimensionality compared to the original feature vectors from both modalities, thus it carries high discriminating power and contains rich statistical information. The fused feature vector also has larger data points in the feature space which is advantageous for the training process using statistical methods. The underlying statistical information in the fused feature vectors is captured using GMM where several numbers of modal parameters are estimated from the distribution of fused feature vector. Maximum likelihood score is used to measure a degree of certainty to perform recognition while maximum likelihood score normalization is used for classification process. The use of likelihood score normalization is found to be able to suppress an imposter likelihood score when the background model parameters are estimated from a pool of users which include statistical information of an imposter. The present method achieved the highest recognition accuracy 97% and 99.7% when tested using FERET-PolyU dataset and ORL-PolyU dataset respectively.Universiti Malaysia Perlis and Ministry of Higher Education Malaysi
    corecore