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ABSTRACT 

 
 
Multimodal biometric systems that integrate the biometric traits from several 
modalities are able to overcome the limitations of single modal biometrics. Fusing 
the information at an earlier level by consolidating the features given by different 
traits can give a better result due to the richness of information at this stage. In this 
thesis, three novel methods are derived and implemented on face and palmprint 
modalities, taking advantage of the multimodal biometric fusion at feature level. 
The benefits of the proposed method are the enhanced capabilities in discriminating 
information in the fused features and capturing all of the information required to 
improve the classification performance. Multimodal biometric proposed here 
consists of several stages such as feature extraction, fusion, recognition and 
classification. 
         Feature extraction gathers all important information from the raw images. A 
new local feature extraction method has been designed to extract information from 
the face and palmprint images in the form of sub block windows. Multiresolution 
analysis using Gabor transform and DCT is computed for each sub block window to 
produce compact local features for the face and palmprint images. Multiresolution 
Gabor analysis captures important information in the texture of the images while 
DCT represents the information in different frequency components. Important 
features with high discrimination power are then preserved by selecting several low 
frequency coefficients in order to estimate the model parameters. 
         The local features extracted are fused in a new matrix interleaved method. The 
new fused feature vector is higher in dimensionality compared to the original feature 
vectors from both modalities, thus it carries high discriminating power and contains 
rich statistical information. The fused feature vector also has larger data points in 
the feature space which is advantageous for the training process using statistical 
methods. The underlying statistical information in the fused feature vectors is 
captured using GMM where several numbers of modal parameters are estimated 
from the distribution of fused feature vector.  
        Maximum likelihood score is used to measure a degree of certainty to perform 
recognition while maximum likelihood score normalization is used for classification 
process. The use of likelihood score normalization is found to be able to suppress an 
imposter likelihood score when the background model parameters are estimated 
from a pool of users which include statistical information of an imposter. The 
present method achieved the highest recognition accuracy 97% and 99.7% when 
tested using FERET-PolyU dataset and ORL-PolyU dataset respectively.  
.  
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Chapter 1 

1.1. Introduction  

      The verification of the identities of individuals is becoming an increasingly 

important requirement in a variety of applications, especially involving automatic 

access control. Examples of such applications are telebanking, the control of 

physical access, and automatic telling machines (ATMs). Traditional approaches 

make use of passwords, personal cards, PIN numbers and keys to achieve 

verification. However, security can easily be breached in these systems when a card 

or key is lost or stolen or when a password is compromised. Furthermore, difficult 

passwords may be hard for a legitimate user to remember and simple passwords are 

easier for an imposter to guess. The use of biometrics offers an alternative means of 

identification which helps avoid the problems associated with conventional 

methods. A biometric identification system is defined as the recognition of an 

individual by using information about certain physical characteristics or personal 

traits held in a database. Recognition could be achieved by the measurement of 

features in any of three categories of intrinsic; extrinsic; and hybrid biometric. 

Intrinsic biometric identify the individual’s generic make-up for example from 

fingerprints or iris patterns. Extrinsic biometrics involves the individual’s learned 

behaviour, such as signatures and keystrokes. Finally, hybrid biometric is based on a 

combination of the individual’s physical characteristics and personal traits such as 

characteristic of the voice. This leads to the question of what biological 

measurements can be interpreted as biometrics. In fact any human physiological or 
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behavioural characteristic can be used as a biometric characteristic as long as it 

satisfies the following requirements [1, 2]: 

 Universality – every person will have their own characteristics. 

 Distinctiveness – any two persons should be sufficiently different in terms of 

the selected biometric identifier. 

 Permanence – the characteristic should be sufficiently invariant over a 

period of time. 

 Collectability – the characteristic can be measured quantitatively.  

However, in a practical biometrics system which employs biometrics for personal 

recognition, there are a number of other issues that should be considered [1]: 

 Performance – the accuracy and speed of achievable recognition in terms of 

the resources required, as well as the operational and environmental factors 

which affect accuracy and speed. 

 Acceptability – the degree to which people are willing to accept the use of a 

particular form of biometric identification in daily life. 

 Circumvention – how easily the system can be fooled using fraudulent 

methods. 

A practical biometrics system should have specified levels of recognition accuracy, 

speed, and resource requirements, be harmless to all users, be accepted by the 

intended population, and be sufficiently robust to resist various fraudulent methods 

and attacks on the system. The success of a biometric system relies on how the 

relevant information is captured, the learning strategy used, and the extent to which 

it is robust to input data variation.  
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1.2. Biometric Systems 

      A biometrics system is basically a pattern classification process that operates by 

obtaining biometric data from an individual, extracting a feature set from the data 

acquired and comparing this feature set against the template set in the database. This 

system consists of four main modules, as shown in Figure 1.1: 

 

 

 

 

 

 

 

Figure 1.1: Basic task of a biometrics system 

 

The sensor module captures biometric data from an individual. An example is a 

palmprint sensor that images the ridge and wrinkle structure of a user’s palm. The 

feature extraction module then processes the biometric data acquired in order to 

extract a set of salient or discriminatory features. For example, the position and 

orientation of minutiae points in a palmprint image are extracted in the feature 

extraction module of a palmprint-based biometric system. The matching module 

subsequently compared the features extracted during recognition against the stored 

templates and generates matching scores. For example, in the matching module of a 

fingerprint-based biometrics system, the number of matching minutiae between the 

input and the template fingerprint images is determined and a matching score is 

reported. The matcher module also incorporates a decision making module, in 
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which a user’s claimed identity is confirmed (verification) or established 

(identification) based on the matching score. A system database module is used by 

the biometrics system to store the biometric templates of enrolled users. The 

enrolment module is responsible for enrolling individual biometrics information 

into the biometrics systems database. During enrolment, the biometric 

characteristic of an individual are first scanned by a reader to produce a digital 

representation of the characteristic. The capture of data during the enrolment 

process may or may not be supervised by a human, depending on the application. A 

quality check is generally performed to ensure that the sample acquired can be 

reliably processed in successive stages. In order to facilitate matching, the input 

digital representation is further processed by a feature extractor to generate a 

compact but expressive representation called a template. Depending on the 

application, the templates may be stored in the central database of the biometrics 

system or be recorded on a smart card issued to the individual. Usually, multiple 

templates of an individual are stored to account for variations observed in biometric 

traits, and the templates in the database may be updated over time. 

 

1.3. Verification versus Identification 

      Biometric recognition systems generally consist of three different modes of 

enrolment, identification and verification, as shown in Figure 1.2 [1]. In the 

enrolment mode two general processes occur. The first is the acquisition of user 

biometric data, where biometric characteristic of an individual is first scanned by a 

biometric reader to produce a raw digital representation of the characteristic. The 

raw image is further processed by a feature extraction method to generate a compact 

representation containing rich information called a template. The second process 
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concerns the storage of the biometric data for each user in a reference database. This 

can be in a variety of forms including a template or a statistical model generated 

using the raw data. Whichever method is used, the stored data is labelled according 

to the user identity in order to facilitate subsequent authentication. The second stage 

of the operation is a testing process where biometric data obtained from the user is 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Block diagram of the basic process in biometric system consists of 
enrolment mode, verification mode and identification mode. 
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compared against the reference database for the purpose of recognition. The 

recognition process can be performed in the two modes of operation, verification 

and identification.  

         In the verification mode, the system validates a person’s identity by comparing 

the captured biometric data with the relevant template stored in the database. In such 

a system, an individual who requests recognition first claims an identity, usually via 

a personal identification number (PIN), a user name, or a smart card, and the system 

conducts a one-to-one judgment to determine whether the claim is true or not. 

Identity verification is typically used for positive recognition, where the aim is to 

prevent more than one person from using the same identity. The verification 

problem can be explained as follows [2]: given an input feature 푋  extracted from 

a test image, and a claimed identity 푋 , determine if (푋 ,푋 )	belongs to class 휔  

or 휔 , where 휔  indicates that the claim is true (a genuine user) and 휔 	indicates 

that the claim is false (an imposter). Typically, 푋  is compared with the 

biometrics template corresponding to	푋  in order to determine its category. Thus 

 

(푋 ,푋 ) 		 ∈ 		
휔 						푖푓	푆(푋 ,푋 ) 	≤ 푡
휔 																	표푡ℎ푒푟푤푖푠푒				 																																(1.1) 

where S is a function that measures the similarity between feature vector 푋  and 

푋 , where t is a predefined threshold. The value	푆(푋 ,푋 )	measures the 

similarity between the given biometric input of the user and the claimed identity, 

where the function can be Euclidean distance, Mahalonabis distance or Likelihood 

score. Parameter t is a predefined threshold which is compared with the function S, 

since the biometric traits of the same individual are never identical due to factors 
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such as being taken at different times, with different poses for the facial images and 

with different types of sensor. 

In the identification mode, the system recognizes an individual by searching 

the templates of all the users in the database for a match. Therefore, the system 

conducts a one-to-many comparison to establish an individual’s identity without the 

subject having to claim an identity. Here, given a test feature vector	푋 , determine 

the identity	퐶 , 푖	 ∈ 	 {1, 2, … ,푁,푁 + 1}. In this case	퐶 , 퐶 ,…퐶  are identities 

enrolled in the system and 퐶  indicates rejection where no suitable identity can be 

recognised by the system. The identification problem can be summarised as follows: 

 

푋 	∈ 	
퐶 													푖푓	max 푆 푋 ,푋 	≤ 푡, 푖 = 1,2, … ,푁
퐶 																																																			otherwise																												

																	(1.2) 

where 푋  is the biometric template corresponding to identity 퐶 , and t is the 

predefined threshold.  

 

1.4 Limitations of Unimodal Biometrics 

       Although several advantages of biometrics system for both civilian and 

government authentication applications have been reported compared with 

conventional methods based on tokens and passwords, it is imperative that the 

vulnerabilities and limitations of these systems are considered when applied in real 

world applications. In real world scenarios where large numbers of users are 

involved, unimodal biometrics that use only single modalities will have various 

limitations. Some of the challenges commonly encountered by unimodal biometric 

systems are as follows [3]: 
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1) Noise or distortion in the data sensed. For example, fingerprints with the 

presence of scars or voices altered by illness will give different raw data during 

the testing and enrolment process. Noisy biometric data may be incorrectly 

matched with templates in the databases resulting in users being incorrectly 

rejected or identified. 

2) Intra-class variations. The biometric data acquired from an individual during 

authentication may differ from the data that was used to generate the template 

during enrolment, thus affecting the matching process. There are several reason 

for these kinds of variations, such as users incorrectly interacting with the sensor 

or if the characteristics of the sensor are modified during the enrolment and 

verification process. Intra-class variations are more prominent in behavioural 

traits, since the varying psychological makeup of an individual might result in 

vastly different behavioural characteristics at different times.  

3) Inter-class similarities refer to the development of feature spaces corresponding 

to multiple classes or individuals. Even when a biometric trait is expected to vary 

significantly between different persons, there may still be large inter-class 

similarities in the feature space that used to represent these traits. Thus, inter-

class similarities will increase the rate of false match in the identification system 

if a large number of users are enrolled in the system. There is an upper boundary 

of the number of individuals that can be effectively discriminated amongst by 

any biometrics system [4]. This upper boundary on the number of distinguishable 

patterns indicates that the capacity of an identification system cannot be 

arbitrarily increased for a fixed feature set and matching algorithm.  

4) Non-universality. The biometric system may not be able to obtain sufficient raw 

biometric data from a subset of users. A fingerprint biometric system, for 
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example, may extract incorrect minutiae features from the fingerprints of certain 

individuals, due to the poor quality of their fingerprint ridges. Thus, the system 

cannot enrol the modalities that have these kind of problems. Thus, there is a 

failure to enrol rate associated with using a single biometric trait such as reported 

in speaker recognition system [5].  

5) Spoof attacks. Spoofing involves the manipulation of one’s biometric traits in 

order to avoid recognition. There is also possible to create artificial physical 

biometrics in order to assume the identity of another person. This type of attack 

is more relevant to behavioural traits such as signatures [6] and gait [7]. 

However, physical traits are also vulnerable to spoof attacks. For example, it is 

possible to construct artificial fingers or fingerprints to circumvent a fingerprint 

verification system [8]. 

 

1.5 Motivation for Multimodal Biometrics 

      Despite substantial advances in recent years, there are still severe challenges in 

obtaining reliable authentication through unimodal biometric systems. These are due 

to a variety of reasons. For instance, there are problems with enrolment due to the 

nonuniversal nature of relevant biometric traits. Non-universality implies the 

possibility that a subset of users do not possess the biometric trait being acquired. 

Equally worrying is biometric spoofing, which means that it is possible for 

unimodal systems to be fooled such as through the use of contact lenses with copied 

patterns for iris recognition. Moreover, the effect of environmental noise on the data 

acquisition process can lead to a lack of accuracy which may disable systems 

virtually from their inception [9]. Biometrics based on voice recognition, for 

instance, degrade rapidly in noisy environments. Similarly, the effectiveness of face 
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verification depends strongly on lighting conditions and on variations in the facial 

image. Some of the limitations imposed by unimodal biometrics systems can be 

reduced by using multiple biometric modalities. The provision of multiple types of 

evidence through the acquisition of multimodal biometric data may focus on 

multiple samples of a single biometric trait, which is designated as multi-sample 

biometrics. It may also focus on samples of multiple biometric types, which is 

termed multimodal biometrics. Higher accuracy and greater resistance to spoofing 

are the basic advantages of multimodal compared to unimodal biometrics. 

Multimodal biometrics involves the use of complementary information as well as 

making it more difficult for an intruder to simultaneously spoof the different 

biometric traits of a registered user. In addition, the problem of non-universality is 

largely overcome, since multiple traits can ensure sufficient of the coverage 

population. Because of these advantages of multimodal biometrics systems they 

may be preferred over a single modality even though the storage requirements, 

processing time and computational demands are much higher.  

       The fusion of complementary types of information in multimodal biometric data 

has been an active research area, since it plays a critical role in overcoming certain 

important limitations of unimodal systems. Efforts in this area are mainly focused 

on fusing the information obtained from a variety of independent modalities for 

example in the combination of the face and palmprint modality to achieve the more 

reliable recognition of individuals. In such an approach, information from different 

modalities is used to provide complementary evidence about the identity of users. 

Most of the fusion of this information occurs at the matching score level. This is 

because the individual modalities provide different types of raw data, and involve 

different methods of classification to achieved discrimination. To date, a number of 
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score-level fusion techniques have been developed for this task [10]. These range 

from the use of different weighting schemes that assign weights to information 

streams according to their information content, till the use of support vector 

machines which use the principle of obtaining the best possible boundary for 

classification according to the training data. Even though fusions at the matching 

score level achieves better results than those from unimodal biometrics, integrating 

information at the feature level is believed to be capable of increasing the richness 

of information in the feature space, thus making it possible to produce better results. 

However, fusion at the feature level has been implemented less often than at the 

matching score level due to the lack of fusion techniques which could combine 

features from two modalities.   

       Another issue in biometric systems is the effect of input data variation on 

recognition performance. Such variations are reflected in the corresponding 

biometric scores, and thereby can adversely influence the overall effectiveness of 

biometric recognition. Therefore, an important requirement for the effective 

operation of a multimodal biometrics system in practice is to minimise the effect of 

variations in the data obtained from the individual modalities deployed. This would 

allow the maximisation of recognition accuracy in the presence of variation, for 

example due to contamination, in some or all types of biometric data involved. 

However, this is a challenging requirement since data can vary due to a variety of 

factors and types of variations can have different characteristics. Another difficulty 

in multimodal biometrics is the lack of information about relative levels of variation 

in the different types of biometric data. The term data variation can be subdivided 

into two types. The first involves variation in each data type arising from 

uncontrolled operating conditions, and the second concerns variation in the relative 
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degradation of data. The former can be due, for example, to the poor illumination of 

a user’s face in face recognition or background noise in voice biometrics or it can be 

generated by the user, such as uncharacteristic sounds from speakers or carelessness 

in using the sensor for providing palmprint samples [1]. Variation in the degradation 

of data, meanwhile, is due to the fact that in multimodal biometrics different data 

types are normally obtained through independent sensors and data capture 

apparatuses. Moreover, any data variation associated with operating conditions may 

in fact also result in variation in the relative degradation of the different biometric 

data deployed. Since, in practice, it may not be possible to fully compensate for 

degradation in all of the biometric data types involved, the relative degradation of 

data appears as another important consideration in multimodal biometrics. This 

thesis reports a number of contributions to increasing the accuracy of multimodal 

biometrics in the presence of variation. These are based on investigating methods 

which can be used to tackle the effects of data degradation and estimating the 

relative quality of different types of biometric data. 

 

1.6 Current feature level fusion for face and palmprint 

       Currently most of the feature level fusion in multimodal biometric which 

combines face and palmprint modalities uses concatenation method to fuse the 

information extracted from both modalities. Concatenation method which serially 

combined the holistic feature vector produces a new fused feature vector which has 

a large feature dimensionality. The new fused feature vector may contain noise and 

redundant information that can affect the discrimination power of the feature vector. 

Furthermore, when limited number of training images is available, accurate 

estimation of model parameters for high dimensional feature vector will not be 
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possible. In the previous feature level fusion, concatenation is performed after pre-

processing method such as Gabor transform where the feature vector becomes larger 

than the original image. High dimensional fused feature vector is then reduced to 

smaller dimensionality by using linear projection method such as Principle 

Componnet Analysis (PCA) and Linear Discriminnat Analysis (LDA).           

      Most of the feature level fusion uses holistic features of face and palmprint 

images. While holistic features contain information of the whole image, they also 

include high frequency components that are not useful for fusion purpose. In 

contrast, fusion of low frequency components is expected to give higher degree of 

discrimination power, thus Discrete Cosine Transform (DCT) analysis can be used 

to extract the information into several frequency bands. Local region in the face and 

palmprint images may also hold important information to distinguish among 

different persons, therefore, fusion process using local features is expected to be 

superior to those using holistic features. Furthermore, information fusion using local 

features produces low dimensional fused feature vector compared to the holistic 

feature fusion. As a result, an accurate statistical model can be estimated using a 

large amount of fused feature vector extracted from each local region of the face and 

palmrint images.   

       Feature distribution of face and palmprint images are scattered in a non 

Gaussian form. Assuming a Gaussian distribution in the feature space produces a 

simple classification method called Euclidean distance classifier that will not utilize 

all the statistical information exists in the feature vector. This method only 

manipulates mean values of the feature space in order to perform classification. Non 

Gaussian information in the feature space requires a more complex model to 

represent the feature distribution and make use of all the statistical information 
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existing in the face and palmprint images. Such model can be Gaussian mixture 

model (GMM) where the estimated models try to fit with the distribution of feature 

vector. Although this model is more complex when compared to the single 

Gaussian, the estimated model will use all statistical information exist in the feature 

vector thus fully utilize feature level fusion.  

            Existing verification analysis of multimodal biometric based on face and 

palmprint images that fuses the information at feature level use minimum value of 

distance classifier in order to compare with a threshold value during the verification 

process. Such method, only considers the information from a genuine user, thus is 

not effective in some cases such as when there are variations among the test and 

train images. Furthermore, this approach cannot include information from any 

imposter also trying to access the system. A reliable verification result can be 

obtained if we can also model the imposters that are trying to access the system. In 

such system, we should be able to model a genuine and imposter feature 

distribution. By using a specific statistical model, a degree of certainty for the input 

image that belongs to a genuine or an imposter user can be obtained.      
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1.7 Aim and Objectives 

      The aims of this thesis are to investigate the fusion of information at feature 

level in multimodal biometrics that use face and palmprint image as the biometric 

modalities. The investigation involves several stages relating to feature extraction, 

fusion and classification which focus on the fundamental theory, assumption made, 

and limitations. In addition, three novel frameworks are proposed according to 

which the feature extraction, fusion and classification processes can be tailored. 

Rigorous mathematical derivations and simulations are carried out to validate the 

effectiveness of the proposed methods. The objectives of this thesis are as follows: 

  

1) To investigate a new feature fusion technique for face and palmprint images 

using matrix interleaved method to generate a new feature vector, which 

addresses the following issues: 

- Non-stationary information in the fused feature vector 

- Increased statistical properties of information in the fused feature vector 

- Increased discriminatory power in the feature vector 

2) To develop a new types of compact local feature extracted from biometric 

images, which addresses the following issues: 

- Multiresolution feature extraction in the biometric image 

- Low frequency information which carries the most information about the 

image 

- Independent feature vectors of local regions in the image 
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3) To develop a learning method to capture the underlying statistical 

information in the fused feature vector, which addresses the following 

issues: 

- Estimation of class specific model parameters 

- Estimation of all user model parameters 

4) To develop likelihood normalization in the classification process, which 

addresses the following issues:  

- Estimation and updating process for class specific model parameters 

- Computation of likelihood normalization among different numbers of 

users 

 

 

1.8 Thesis Contributions 

       Multimodal biometric system has been continually designed and many methods 

of information fusion have been proposed by researchers. Most fusion methods 

focus on the matching score level, but less information can be gained at this level.  

Some types of existing feature level fusion use concatenation methods by using a 

global feature vectors which tend to be associated with dimensionality problems. 

This thesis has provided a novel methodology and pioneered a direction for research 

that will enable the development of a new feature fusion approach to multimodal 

biometrics capable of yielding better performance in identification and verification 

process. In addition, the proposed methods overcome the limitations associated with 

conventional feature fusion approaches in multimodal as well as unimodal 

biometrics. This thesis presents three novel methods representing significant 
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improvements in performance in terms of identification and verification. The 

contributions of this thesis can be outlined in five areas: 

i) The methodology of feature extraction developed in this thesis represents 

a new technique to extract local features that have low feature 

dimensionality while preserving low frequency components, which is 

important for discrimination analysis. This method uses multiresolution 

Gabor analysis, which is able to extract the information about the texture 

of images at different orientations and scales. The low frequency 

components are selected from the Discrete Cosine Transform (DCT) 

coefficients which can be used to reduce the dimensions of the feature 

vector. The extracted independent local feature vector suitable to be used 

in the feature fusion process or in unimodal recognition analysis.  

ii) A new framework for feature fusion methods is based on the matrix 

interleaved using compact local feature representation. This is able to 

increase discrimination power in the new fused feature vector due to the 

rich information gained from feature fusion. The method combines low 

frequency information from two modalities and increases the size of the 

feature vector, and thus is able to give high discrimination power in the 

classification process. 

iii) The learning method based on Gaussian Mixture Model (GMM) is able 

to capture the underlying statistical information which exists in the fused 

feature vector. Thus, a complex distribution of the fused feature vector 

can be represented by a probability density function. Whereas most 

biometric systems use the Euclidean classifier to conduct the 

classification process, in which assumptions of normal distribution are 
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made concerning feature distribution, the method proposed here is able 

to give a new approach and break this assumption and is therefore more 

practical for real biometric data.  

iv) Using likelihood normalization to compute a final likelihood score is 

able to compensate for the imposter scores that are trying to claim true 

identities. The likelihood normalization is computed based on the 

background model and is able to cover all imposters existing in a system.  

v) The thesis helps to solve several major problems in the single modal 

biometrics, and offers ways for biometrics to be used for more secure 

and accurate applications such as in law enforcement, e-services and 

financial services.  

 

1.9 Thesis Organisation 

 This research focuses on face and palmprint multimodal biometric fusion at 

the feature level. Three novel methods are proposed in this work covering feature 

extraction, information fusion and the classification process. These new method are 

discussed in Chapter 3, Chapter 4 and Chapter 5 respectively.   

          Chapter 2 first introduces multimodal biometrics systems and their advantages 

over single modal biometrics. Different levels of fusion and their implementation in 

existing method are briefly reviewed. Conventional feature level fusion in biometric 

images is discussed along with their method of classification. Then, an overview of 

learning method based on density estimation in parametric models is discussed. 

         Chapter 3 focuses on feature extraction and representation of the biometric 

images and establishes a new method for the compact local representation of face 

and palmprint images. Multiresolution image analysis and the Discrete Cosine 
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Transform (DCT) are briefly discussed and the concepts involved in the proposed 

compact local feature extraction in sub blocks of the image are introduced. 

Experiment analysis to validate the theory and evaluate the performance of the 

proposed method is then reported.  

        Chapter 4 presents the novel matrix interleaved feature fusion. The conceptual 

framework for the new fusion method is described and explanations provided of the 

estimation of the probability density functions in the fused feature vector. The 

recognition process performed using maximum likelihood values computed from the 

estimated model is also explained. The overall framework is validated using several 

experimental analyses which analyze recognition performance.  

       Chapter 5 introduces the likelihood normalization technique which is able 

to increase the performance of the verification system by incorporating imposter 

scores into the final computation of likelihood value. Two likelihood normalization 

methods are discussed, the Universal Background Model (UBM) and Cohort 

Background Model (CBM), which is able to compensate the likelihood score of 

imposters that are trying to access the system and reduce the variations in the input 

test images. Several comparisons and simulations are carried out to investigate the 

implementation of the proposed method. 

        Chapter 6 presents the overall conclusions, achievements and limitations 

of the thesis. It also addresses directions for further work.  
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Chapter 2 
 

Multimodal Biometric Fusion and Classification 

 

2.1 Introduction 

 

       This chapter reviews and discuss the common methods used for information 

fusion in multimodal biometrics systems. The advantages and disadvantages of each 

fusion level used are discussed in detail. This is followed by discussion of the types 

of classifier that can be used in multimodal biometric, estimation of parametric 

model and Bayesian learning methods.  

 

2.2 Information Fusion 

       Multimodal biometrics can overcome some of the limitations of unimodal 

biometrics systems by using several biometric modalities to represent individual 

characteristics. Such systems are expected to be more reliable due to the presence of 

multiple and independent sources of evidence [11,12,13]. Multimodal biometric 

systems can overcome the problem of non-universality when multiple traits are used 

to ensure sufficient population coverage. Multimodal biometrics can also provide 

anti-spoofing measures by making it difficult for an intruder to simultaneously spoof 

the multiple biometric traits of a genuine user. Furthermore, by using multiple traits, 
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more information can be gained which can eliminate the problem of inter-class 

similarity in the feature space and thus increase the performance of the recognition 

rate. The use of independent modalities is expected to have a very significant role in 

the improvement possible when feature from multiple biometric modalities are 

fused. A properly designed combination scheme that has been trained and tested on 

a large amount of data is expected to perform better than even the best single 

modality system. One of the challenges faced in reducing inter-class similarity is to 

find a method of integrating all of these traits. In a biometric recognition system, the 

amount of information available in the system will decrease when we move from 

front processing at the sensor level to end processing such as in decision modules. 

Information of the biometric traits can be merged at several different levels of 

fusion, as shown in Figure 2.1, either at the sensor and feature level; at matching 

score level; at the decision level [10]. At the early stages of information fusion, the 

integration of data from multiple biometric sources can be carried out at the sensor 

level or at the feature level.  

       Sensor level fusion involves combining raw data from sensors, and it can be 

achieved if the multiple sources represent samples of the same biometric trait 

obtained using single or different compatible sensors. In this method, the multiple 

modalities must be compatible with feature level in the raw data and must be known 

in advance, for example in the construction of 3D face images by integrating raw 

images captured from several cameras [14]. Jain [15] integrates information at the 

sensor level by forming a mosaic of multiple fingerprint impressions in order to 

construct a more elaborate fingerprint image. Feature level fusion (Figure 2.1a) 

refers to combining the features obtained from multiple modalities into a single 

feature vector. If the features extracted from multiple biometrics are independent of 
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each other and involve the same type of measurement scale, it is reasonable to 

concatenate the two vectors into a single new vector. 

 

 

 

 

(a) 

 

 

 

 

 

(b) 

 

 

                                                                         

 

 

(c) 

Figure 2.1: Different levels of fusion in multimodal biometrics systems. a) 
Feature level. b) Matching score level. c) Decision level  
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The new fused feature vector will have higher dimensionality and thus increase the 

discriminating power in feature space. Feature reduction techniques or feature 

selection schemes may then be employed to extract a small number of significant 

features from a larger set of features [16, 17, 18]. In some cases concatenation is not 

possible, such as when the feature sets are incompatible as in the case, for example, 

with fingerprint minutiae and eigen-face coefficients.  

        Fusion at matching score level (Figure 2.1b) refers to the combination of 

similarity scores provided by a matching module for each modality when the input 

features are compared against templates in the database [19]. This method is also 

known as fusion at the measurement or confidence level. The matched score output 

generated by biometrics matchers contain rich information about the input pattern 

after the feature extraction module. Fusion at matching score level can be 

categorised as involving two different approaches depending on how the matching 

score given by matching module is treated [20]. In the first approach, the fusion can 

be viewed as a classification problem where a feature vector is constructed using the 

matching score output by the individual matchers. Then, the constructed feature 

vector is classified into two of the classes whether to accept or reject the claim user. 

In the second approach, fusion is viewed as a combination approach where 

individual matching scores are combined to generate a single scalar score using 

normalization techniques and fusion rules. The new single scalar score is then used 

to make a final decision. The combination approach to the fusion of matching scores 

has been extensively studied, and Ross [10] concluded that it performs better than 

the classification approach. Fusing matching scores using the combination approach 

has some issues arise during computing a single fusion score given by different 
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modalities. A normalization technique is required to transform matched scores into a 

common domain prior to combining them, since the matching scores generated from 

different modalities are heterogeneous [20]. Several different kinds of normalization 

technique have been proposed, such as min-max, median and sigmoid 

normalization.  

      Integration of the information at the decision level (Figure 2.1c) is performed 

when each of the individual biometric matchers decides the best match based on the 

input features presented to the matching module. Various methods such as majority 

vote [21], behaviour knowledge space [22], AND and OR rule [23] can be used to 

make the final decision. This kind of fusion uses binary information to derive a final 

decision, and thus fusion at decision level is not effective since only a limited 

amount of information is available at this level. Therefore, the integration of the 

information at feature and matching score level is generally preferred due to the 

richness of information available at the fusion stage.  

       Multimodal biometrics systems that fuse information at an early stage are 

believed to be more effective than those that integrate it at a later stage. This is due 

to the rich information which exists at feature level compared to that at matching 

and decision level. Since the features contain richer information about the input 

data, learning the distribution of the fused feature using statistical models to capture 

the relevant statistical properties is likely to give better classification performance. 

In most existing feature fusion methods, a concatenation feature vector is classified 

using a distance classifier, where an assumption is made of normal distribution in 

the fused feature vector. Such an assumption does not fully utilize the information 

available in the fused feature vector which has a non  Gaussian feature distribution 

due to the non linear information in the biometric image. Thus, one of the aims in 
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this thesis is to propose statistical method based on a Gaussian mixture model 

(GMM) to capture underlying statistical information which exists at the early stages 

of information fusion. To the best of the present author’s knowledge, this is the first 

study of multimodal biometrics to propose the capture of underlying statistical 

information from the fused feature vector by using GMM, as well as the first to 

specifically use local features in multimodal biometrics based on face and palmprint 

images. Theoretically, GMM should be better to capture a complex distribution of 

features than a single Gaussian distribution due to the utilizing several normal 

distribution to form a mixture model.  

 

2.3 Research on Multimodal Biometrics 

      Although biometrics technology for authentication has been studied for more 

than 30 years, multimodal biometrics that combines information from several 

different traits in the authentication process have received much attention in recent 

years. There are a number of advantages given by the combination of different traits, 

such as decreasing False Accept Rate (FAR) and False Reject Rate (FRR), making 

systems more robust in case of sensor failure and where the system is not able to 

read the input such as when scarring obscures in fingerprint. Most multimodal 

biometrics proposed in the literature focus on increasing the accuracy of recognition 

by measuring the error rates given by FAR and FRR. In 1995, Brunelli et al. [24] 

proposed a multimodal biometrics system that uses face and voice traits for 

identification. Their system performs the fusion of the matching scores given by five 

different matching modules computed from voice and face features to generate a 

single matching score used for identification. In 1997, Duc et al. [25] proposed a 
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method to integrate information extracted from speech and face modalities by using 

a statistical framework based on Bayesian statistics. Hong et al. [26] proposed a 

multimodal biometrics that combines face and fingerprint information at the 

decision level for person identification. The identification for each modality is 

conducted separately by PCA based face and minutiae based fingerprint 

identification and then the decisions of each module are combined in the 

consolidation of multiple cues by associating different confidence measure with the 

individual biometric matchers. Their results showed a significant improvement in 

the accuracy of identification, where the multimodal approaches achieved 92% 

Genuine Acceptance Rate (GAR) at 0.01% FAR. On the other hand, single modal 

biometrics only achieved 86% and 45% GAR at 0.01% of FAR for face and 

fingerprint images respectively.  

      In 2000, Frischholz and Dieckmann [12] proposed a commercial multimodal 

product called BioID that uses voice, lip motion and face features of users for 

verifying their identity. Lip motion and face images are extracted from a video 

sequence and the voice is extracted from an audio signal. Their experimental results 

showed they achieved below 1% FAR when tested on 150 subjects. In 2003, 

Fierrez-Aguilar and Ortega-Garcia [27] then proposed a multimodal biometrics 

system based on face, fingerprint and signature data with a fusion method performed 

at the score level. Individual matching scores in each modality were computed 

separately based on global appearance face representations; minutiae based 

fingerprint representations and the Hidden Marcov Model (HMM) modelling of 

temporal functions for signature verification. Fusion at score level was then 

established by using a sum-rule and a support vector machine (SVM). Their results 

showed a significant improvement in terms of Equal Error Rate (EER), where the 
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multimodal method achieved the best value of 0.05% EER compared to the single 

modal which is 3% EER. In the same year, Kumar el al. [28] proposed a multimodal 

approach based on palmprint and hand geometry by using a fusion method 

performed at the feature and matching score level conducted using concatenation 

and the max rule respectively. Their analysis showed that only fusion at matching 

score level outperformed the results given by a single modality system. Ross and 

Jain [10] then proposed a method to combine three modalities based on face, 

fingerprint and hand geometry. Three fusion methods at matching score level were 

considered. The sum rule, decision trees and a linear discrimination function were 

computed, and a normalization method was applied to the matching scores prior to 

combining them. Their results showed that sum rule fusion outperformed the other 

fusion strategies as well as a single modal system.  

      In 2003, Wang et al. [29] proposed a multimodal system that combined the 

scores given by PCA based face and iris verification systems. Their operated fusion 

strategy at the matching score level using weight sum rules, unweight sum rule, 

fisher discriminant analysis and a neural network.  Toh et al. [30] also proposed the 

use of the weighted sum rule to fuse the matching scores given by hand geometry, 

fingerprint and voice modalities. In 2005, Snelick et al. [31] developed a multimodal 

biometrics system for face and fingerprint images with a fusion technique performed 

at matching score level. In their fusion framework, values of three fingerprint 

matching scores and one face matching score from a commercial system are used. 

They study the effect of using seven different score normalization techniques and 

different fusion strategies performed on the normalized scores, such as simple sum, 

min score and max score. The results showed all of the normalization and fusion 

approaches outperform a single modal biometric. Jain et al. [20] proposed a 
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multimodal approach combining face, fingerprint and hand geometry using a fusion 

method at score level. The output of three matcher module is fused together from a 

similarity score for minutiae based matcher of fingerprint images, the Euclidean 

distance for PCA based algorithm of face images and the Euclidean distance for 

feature vector of hand geometry. They investigated several techniques for score 

normalization; namely, Min-Max, z-score, Median-MAD, Double sigmoid, Tanh 

and Parzen normalizations. The normalized techniques are tested using three 

different score fusion methods using the sum rule, max rule, and min rule. Their 

results showed all fusion methods outperformed the single modal biometric for all 

normalization methods except median MAD. At low FAR, the tanh and min-max 

normalization techniques outperformed the other techniques, while at higher FAR, 

the z-score normalization performed better than the other techniques.  

      From the above discussion it can be concluded that most types of multimodal 

biometric fusion proposed so far focus on fusion at the matching score and decision 

levels. Feature level fusion has been implemented less often for several reasons, 

such as the need to consider the presence of noise in component feature sets, and the 

fact that a new matching algorithm may be necessary to compare the fused feature 

sets. Thus this research work developed a new framework for multimodal biometric 

beginning with the extraction of important features in the face and palmprint 

modalities and the reduction of the noise present in the extracted features. Then, the 

information from each modality is integrated at feature level by using matrix 

interleaved method. Next, the fused feature vector is learned using a GMM where 

identification is computed based on maximum likelihood scores and verification is 

computed with the implementation of likelihood normalization.  
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2.4 Feature Level Fusion 

      Fusion is a popular method of increasing the performance of biometrics 

verification by consolidating information given by multiple modalities, such as face 

and palmprint, or iris and fingerprint data. Generally speaking fusion can be 

conducted at four different levels: at the sensor, feature, matching score or decision 

levels. Fusion at each level necessitates a different computational task due to the 

different nature of the input at that level. Figure 2.2 shows the amount of the 

information available for fusion at different levels. The raw data represents the 

richest source of information, whereas on the other hand, the final decision contains 

a single bit of information. However, although the raw data contains the richest 

information, it is corrupted by noise and exhibits high intra-class variation which 

needs to be reduced in the feature extraction module. Moreover, working on raw 

data entails high memory costs due to the large amount of information which needs 

to be stored in databases.  

 

        Raw Data           Extracted Features            Match Score               Final Decision 

                      

           3.5 MB                       32 Bytes                     1 Byte                        1 Bit 

Figure 2.2: Amount of information from raw image to decision module. 
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       Fusion at feature level will produce a new feature vector in high dimensional 

feature space given by 푥 ∈ ℝ ,푚 ≥ 1, 푖 = 1,2, …푁. At matching score level, the 

feature vector is the output of each expert, and thus is reduced to a scalar value, 

푆 ∈ ℝ, 푖 = 1,2, …푁.		At the decision level, the matching scores 푆  are compared 

with threshold values in order to derive the binary decision 푑 ∈ {1,0}, 푖 =

1,2, … ,푁. Fusing at the matching score and decision level does not fully utilize 

important information in the feature vector because the integration is performed on 

scalar and binary value. Several rules for matching score fusion have been proposed 

in the literature, such as max, min and sum rules computed based on the output of 

each independent expert. Each modality is assumed to have its own statistical 

properties, but in reality they are related to each other. Thus integrating information 

at the feature level will combine not only the feature vectors but all of the statistical 

properties in each modality as well.  

      Most feature fusion methods utilise concatenation in order to integrate the 

information from different modalities. In this case, the types of features used for 

concatenation have an impact on the performance of the system. Some features 

might contain redundant information, and thus a feature selection method needs to 

be used in order to select the best features. In some cases, a fused feature vector 

might contain noise from the data, and this will degrade performance when fusion is 

performed on less discriminative data. In order to achieve good performance in the 

fusion of feature vectors, the type of feature vector used plays an important role in 

increasing discrimination power during the integration process. Thus a new feature 

extraction framework is proposed here that can be used in feature fusion methods 

for multimodal biometrics. This method is based on the compact energy 

representation of multiresolution independent local features extracted from 2D 
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biometrics images. Previous studies have concatenated two types of features, where 

those that represent the whole image are known as holistic features, while those 

representing certain parts of images are known as local features. 

      The method proposed by Jing [32] used global features based on the Gabor 

transform to concatenate face and palmprint information at feature level. With 

different scales and orientations, a set of Gabor filters are used to extract the texture 

information existing in each modality. In their method concatenation was performed 

in a high dimensional feature space, and then the high dimensional fused feature 

vectors were reduced to a low dimensional feature space using kernel discriminative 

common vectors. Concatenation can also be performed on feature spaces with low 

dimensionality as suggested by Yao [33], where the extracted PCA features for face 

and palmprint images are fused using weighted values. In their method, important 

information existing in the face and palmprint images is extracted using the Gabor 

transform to produce a nonlinear feature vector. The assumption of normal 

distribution in the fused feature vector leads to a distance classifier being utilized, 

where in practice the distribution of the fused feature is scattered in a non Gaussian 

form due to the nonlinear properties of face and palmprint images. Another method 

for the fusion of face and palmprint modalities at feature level was proposed by Yan 

[34] using global features extracted from PCA in the fusion process. Each 

component of fused feature vector is derived by the addition of the inner products of 

low dimensional PCA features and a set of correlation filters using the 1D Fourier 

transform. Lu [35] proposed fusion at feature level using global features extracted 

from face and palmprint images using a set of Gabor filters. The information was 

fused at feature level using the summation of the weighted results of Independent 

Component Analysis (ICA) for each of the modalities. In this method, an 
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appropriate weighting value must be chosen in order to achieve a good result. 

Rattani [36] proposed to fuse face and fingerprint features using the concatenation 

of local feature points obtained from two modalities, which is believed to have 

better discrimination power compared to the unimodal biometrics based on face and 

palmprint modalities. In this method, the fusion is performed on the local features of 

the face given by the eye, nose and mouth, whereas those for fingerprints are given 

by minutiae points and texture of palm image. Important information at each local 

region is extracted using the Gabor transform with different orientations and scales. 

Kong [37] proposed feature level fusion where multiple elliptical Gabor filters with 

different orientations were used to extract the phase information from palmprint 

images and then merged according to a fusion rule to produce a single fused feature 

called the Fusion Code. Wang [38] proposed a method to fuse palmprint and palm 

vein images using features extracted from a wavelet transform, and the fusion 

method is able to enhance the discrimination power of the images. These two 

modalities are fused using edge preserving and contrast enhancing wavelet fusion 

method where the modified multiscale edges of the palmprint and palm vein images 

are combined. Pajares [39] proposed image fusion based on wavelet decomposition, 

where images features in different multiscale are fused together. In this method, 

feature fusion is performed on the same group of wavelet multiscales of two 

different images. Feature fusion based on a wavelet transform has several 

advantages in that the multiscale approach is able to manage image resolution where 

the image information is preserved in different kind of wavelet decomposition. Ross 

[16] integrated 2D images of the hand and face at the feature level by using the 

concatenation of normalized feature vectors extracted from two modalities. In order 

to reduce high dimensional feature vectors and remove noisy features affected from 
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the concatenation process, a feature selection process based on the floating search 

method proposed by Pudil [40] was used to choose minimal feature sets that would 

increase the performance of classification. Ravigaran [18] proposed to use feature 

selection algorithm using particle swarm optimization (PSO) in order to optimise the 

representation of feature after concatenating the log Gabor images of face and 

palmprint modalities. Implementing PSO to select dominant features will 

significantly reduce a large amount of feature vectors in the feature space. Then, the 

selected features are further reduced using kernel discriminant common vector 

(KDCV) method to select the most discrimination features from the fused feature 

vector. Another interesting fusion approach was proposed by Xie [41] where the 

local phase and magnitude of Gabor face images are fused together. In this method, 

the operator of XOR patterns is multiplied with Gabor image in the sub block 

window and then a block based Fisher Linear Discrimination (FLD) analysis is used 

to reduce the dimension of the concatenated histograms. Fusion of magnitude and 

phase is performed using the features extracted from block based FLD analysis. 

Ajay [42] proposed a new feature extraction method which can be used to integrate 

hand shape and palm texture information. This implies that only small subsets of 

features may be necessary to be fused together. For example, a feature selection 

method can be used to extract the hand shape feature, and compact energy features 

given by a DCT are used to extract the texture of the palmprint image. 

 

2.5 Density Estimation in the Parametric Models 

      The distribution of the fused feature vector in the feature space can be 

represented as a density function. Given a class 퐶  and 푖 = 1,2,3, … 푐, the densities 

푓 , 푓 , …푓  are known as the class conditional densities because they represent the 
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probability density function of the fused feature vector in class 퐶 . The densities 

푓 , 푓 , …푓  are usually unknown and need to be estimated from a given training 

feature vector from class 퐶 . Density estimation can be computed either by 

parametric or non-parametric methods [43]. In parametric density estimation 

techniques, the type of density function is known and only its parameters need to be 

estimated from the training data. Such density function distributions can be 

Gaussian or Normal density function, and the only parameters that need to be 

estimated from the training data are means and standard deviations. The Gaussian 

assumption used in representing class conditional densities will not be appropriate to 

represent the distribution of the fused feature vector due to the complexity of 

features in biometric data. More complex models, such as GMM, can be used to 

represent the class conditional density function of the fused feature vector. Same as 

the Gaussian density function, we only know its form; however, the details of 

parameters need to be estimated from the training data.  

       Parameter estimation can be computed in several ways, such as by using 

maximum likelihood and Bayesian estimation methods [44]. This thesis only 

considers density estimation by using maximum likelihood methods, where the 

unknown parameters are viewed as quantities with fixed but unknown values. The 

best estimates of parameter values are then defined as those which maximize the 

probability of obtaining the samples actually observed. Parameter estimation in the 

mixture model can be explained as follows. First, assume that a complete 

probability structure of mixture model is known except for the values of parameters 

that form their structure. Under this assumption, the form of the class conditional 

probability densities 푝 퐱|휔 ,휽 , 푗 = 1,2, … , 푐 consists of a known number of c 

components and the prior probabilities 푃 휔 , 푗 = 1,2, … , 푐 for each component are 



CHAPTER 2 
 

35 
 

known. Such assumptions leave the problem of estimating the model parameters of 

the mixture models given by 

푝(퐱|휽) = 푝 퐱|휔 ,휽 푃 휔 																																					(2.1) 

where 휽 = {휽 ,휽 , … ,휽 }. If the conditional densities 푝 퐱|휔 ,휽  have a Gaussian 

or normal distribution the components will consist of means and covariance, 

휽 = {μ,∑}. 푃(휔 ) is a mixing parameter and can also be included among the 

unknown parameters. The aim of the maximum likelihood method is to use samples 

drawn from the mixture models in Eq. (2.1) to estimate the unknown parameters	휽. 

Once parameters 휽 are known, the mixture can be decomposed into its components 

and use maximum a posterior classifier to perform the classification process.  If a 

sample data given by 퐷 = {퐱 ,퐱 , … . , 퐱 } consists of n samples drawn 

independently from the mixture model in Eq. (2.1), the objective is then to find a 

values of parameters 휽 that maximizes	푝(퐷|휽), where 푝(퐷|휽) is the likelihood 

function. If 퐱 ∊ 퐷 are assumed to be independent, the joint parameter conditional 

probability density function (pdf) of the data D is: 

푝(퐷|휽) ≡	 푝(퐱 |휽) 																																																(2.2) 

The goal is to maximize 푝(퐷|휽) with respect to the parameter vector 휽, as 

illustrated in Figure 2.3 [44]. Thus, we need to differentiate the function 푝(퐷|휽) 

with respect to 휽 and make them equal to zero as follows:  

훻휽푝(퐷|휽) = 0																																																								(2.3) 

One useful function is the natural logarithm function, that is, to work with 

푙표푔[푝(퐷|휽)]. By denoting the log of the likelihood function as: 

푙(휃) = 푙표푔{푝(퐷|휽)}																																																	(2.4) 
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then the independent assumption in Eq. (2.2) allows Eq. (2.4) to be re-written as:  

푙(휃) = 푙표푔{푝(퐱 |휃)}																																																(2.5) 

Using Eq. (2.3) yields the following: 

휵 푙 = 	
1

푝(퐱 |휽)휵 푝 퐱 |휔 ,휽 푃 휔 																						(2.6) 

                            

 

 

 

                             푝(퐷|휽) 

 

 

                                                                           
                                                                            휽                                          휽 
 
 
 
 

Figure 2.3: Computation of maximum likelihood. 
 
 

By using Bayes rule, posterior probabilities can be expressed as 푃(휔 |퐱 ,휽) =

(퐱 | ,휽) ( )
(퐱 |휽)

		and the gradient of the log likelihood can be written in a new form: 

휵휽 푙 = 푃(휔 |퐱 ,휽)휵휽 log푝 퐱 |휔 ,휽 																													(2.7) 

Because the gradient must equal zero at the value of 휃  that maximizes l, the 

maximum likelihood estimate 휽  must satisfy the conditions: 

휃 is the estimate that maximizes the 
likelihood function 푝(퐷|휽), that is, 

the ML estimate 
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푃(휔 |퐱 ,휽)휵휽 log푝 퐱 |휔 ,휽 = 0						푓표푟	푖 = 1,2, … , 푐																		(2.8) 

The maximum value of 푝(퐷|휽)extends over ߠ and 푃(휔 ), subject to the constraints 

that 푃(휔 ) ≥ 0 for 푖 = 1,2, … , 푐 and ∑ 푃(휔 ) = 1. If the likelihood function is 

differentiable and if 푃(휔 ) ≠ 0 for any value of i, then 푃(휔 ) and 휽  must satisfy: 

푃(휔 ) =
1
푛 푃 휔 |퐱 ,휽 																																																		(2.9) 

and  

푃 휔 |퐱 ,휽 휵휽풊 ln푝 퐱 |휔 ,휽풊 = 0 																																				(2.10) 

where  

푃 휔 |x ,휽 =
푝 x |휔 ,휽 푃(휔 )

∑ 푝 x |휔 ,휽 푃 휔
																																				(2.11) 

 

Equations (2.9)–(2.11) above can be used to estimate the unknown value of the 

mixture parameters μ ,∑ 	and	푃(휔 ).	 Let 푥 (푘) be the p-th element of 퐱 , μ (푖) be 

the p-th element of μ , 휎 (푖) be the pq-th element of ∑ , and 휎 (푖) be the pq-th 

element of ∑ . The following differentiation: 

ln푝(퐱 |휔 ,휽 ) = ln
∑

/

(2휋) / −
1
2

(퐱 − μ ) ∑ (퐱 − μ )															(2.12) 

with respect to the elements of μ  and ∑ will give:  

휵 ln푝(퐱 |휔 ,휽 ) = ∑ (퐱 − μ )																																		(2.13) 

and 

(퐱 | ,휽 )
( )

= 1 − 휎 (푖)− 푥 (푘) − μ (푖) 푥 (푘) − μ (푖) 								(2.14) 
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where 훿  is the Kronecker delta. Substituting the result in Eq. (2.10) gives the 

following equations for the local-maximum likelihood estimates for 

μ ,∑ 	and	푃(휔 ) [43]: 

푃(휔 ) =
1
푛 푃 휔 |퐱 	,휽 																																																					(2.15) 

μ =
∑ 푃 휔 |퐱 ,휽 퐱
∑ 푃 휔 |퐱 ,휽

																																																	(2.16) 

∑ =
∑ 푃 휔 |퐱 ,휽 (퐱 − μ )(퐱 − μ )

∑ 푃 휔 |퐱 ,휽
																																(2.17) 

where  

푃 휔 |퐱 ,휽 =
푝 퐱 |휔 ,휽 푃(휔 )

∑ 푝 퐱 |휔 ,휽 푃 휔
																																															(2.18) 

						= 	
∑

/
exp − (퐱 − 흁 ) ∑ (퐱 − 흁 ) 푃(휔 )

∑ ∑
/
푒푥푝 − 푥 − 흁 ∑ 퐱 − 흁 푃 휔

						(2.19) 

 

2.6 Expectation Maximization (EM) 

       The application of parameter estimation using the maximum likelihood derived 

in the previous section can be extended to permit the parameter estimation of the 

distribution of training features where some of its have missing features. The 

parameter estimation method is based on the expectation maximization (EM) 

algorithm which iteratively estimates the likelihood value that the given data is 

present and the iteration process continues until a certain criterion is achieved. 

Given a full sample 풟 = {퐱 , 퐱 , … ,퐱 } taken from a single distribution where some 

features are missing, and supposing that each data point consist of missing features, 

thus each of them can be written as 퐱 = 퐱 ,퐱 , where 퐱  is a good feature 
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and 퐱  is a bad feature. These two types of features can be separated into 풟  and 

풟 , where 풟 = 풟 ∪ 풟  is the union of good and bad features. So, the EM 

algorithm maximizes the expectation of the log likelihood function, conditioned on 

the observed samples and the current iteration estimate of ߠ. The EM algorithm 

consists of two steps as follows [43, 44]. 

 Expectation step (E-Step): Compute the expected value at the (푡 + 1)푡ℎ step 

of the iteration with a given parameter 휽(푡): 

푄 휽; 	휽 = 휀풟 ln푝 풟 ,풟 ; 	휽 |풟 ; 	휽 																										(2.20) 

where the use of the semicolon in 푄 휽; 	휽  is a function of ߠ with 휽  

assumed fix. The semicolon on the right hand side denotes that the expected 

value is over the missing features assuming that 휽  are the true parameters 

describing the distribution.  

 Maximization step (M-Step): Compute the next (푖 + 1)푡ℎ estimates of ߠ by 

maximizing 푄 휽;휽(푡) , that is: 

휽(푖 + 1):
휕푄 휽;휽(푖)

휕휽 = ퟎ																																									(2.21) 

The E-Step and M-Step processes will terminate if 휽 − 휽 ≤ 	휀, where 

휀 is a certain threshold value. The number of EM iterations depends on the 

value of 휀. Small value of 휀 will produce many iterations and large values 

will give fewer number of iterations.  
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2.7 Summary 

      This chapter summarizes the state of the art concerning information fusion in 

multimodal biometrics and their advantages compared to single modal biometrics. 

Different levels of information fusion are briefly discussed and the relevant is 

explained in detail. From the literature review, it is clear that feature level fusion has 

been implemented less often even though it is believed to give superior results due 

to the rich information exist in the fused feature vectors. Thus, the following chapter 

investigates feature fusion methods and their effectiveness in the recognition and 

verification process. Next, the learning processes based on estimation methods 

which use parametric models to capture statistical information exist in the fused 

feature vectors are explained. Parametric models that use mixture densities can 

represent information using several statistical parameters such as weights, means 

and covariance matrices.  
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Chapter 3 

Feature Extraction and Compact Feature Representation 

3.1 Introduction 

       This chapter investigates global and local feature extraction techniques that can 

be used in feature fusion. Feature extraction is important for the success of the 

recognition and classification process, and should be able to extract more 

information while reducing noise and avoiding redundant data with fast 

computation. The features given by the extraction process can be used to gain 

statistical information using supervised and parametric learning techniques. In this 

chapter, a new framework for feature extraction is proposed which aims to represent 

local features in a multiresolution compact representation that can be used in the 

fusion method subsequently proposed in Chapter 4. The effectiveness of the 

proposed technique is then extensively examined using several types of 

experimental analysis and the results are compared with those of existing methods.  

 

3.2 Holistic Features Representation  

        Holistic approaches directly compute the data from raw images and process the 

raw image as two dimensional holistic patterns. Linear projection method such as 

PCA and LDA are two traditional methods which have become default tools in 

holistic based approaches to reduce dimension of feature vectors and increase 
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discrimination power in the feature space. Many methods for the extraction of face 

and palmprint features have been developed using projection methods, such as 

Eigenface [45], Eigenpalm [46], Fisherface [47,48], Fisherpalm [49] and their 

variants [50-54]. PCA performs linear projection method in the image space 

producing low dimensional feature vectors where the projection directions will 

maximize the total scatter across all images. During the projection process which 

maximizes the total scatter matrices, PCA also retains unwanted variations which 

exist in the images, such as those caused by differences in illumination and facial 

expressions which will not give the best results in terms of discrimination power. 

Given a set of N sample images in the one dimensional long vector {퐱 ,퐱 , … . ,퐱 } 

with n-dimensional space, and assuming that each image belongs to one of C 

classes	{푋 ,푋 , … ,푋 }, the linear transformation mapping the original n-dimensional 

space into low m-dimensional space is given by 푦 = 푊 퐱 , where k=1, 2,…N and 

푊 ∈ ℝ  is a matrix with orthonormal columns which maximize the determinant 

of the total scatter matrix of the projected samples. The criterion that is used to 

optimize the matrix W is given by 푊 = arg max |푊 푆 푊| , where 푆  is a total 

scatter matrix is given by 푆 = ∑ (퐱 − 휇)(퐱 − 	휇)  where N is the number of 

training images and μ ∈ ℝ  is the mean image of all samples. A drawback of this 

approach is that it maximizes both between-class and within-class scatter, where 

within-class scatter is unwanted information in the discrimination process.  

       Belhumuer [47] proposed a supervised linear projection method called Fisher 

Linear Discrimination (FLD) to reduce the dimensionality of the feature space by 

incorporating a class label. FLD is a class specific method which tries to shape the 

scatter for features in the same class to be close to each other as possible and while 

separating the features in a different class to be as far as possible. This method is 
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accomplished by choosing the optimal projection 푊  which maximizes the ratio of 

the determinant of the between-class scatter matrix to that of the within-class scatter 

matrix of the projected samples given by	푊 = arg max 	 . The between-

class scatter matrix is given by 푆 = 	 ∑ 푁 (μ − μ)(μ − μ)  and the within-class 

scatter matrix is defined by 푆 = ∑ ∑ (푋 − μ )(푋 − μ )∈ , where µ is the 

mean image of all images, μ  is the mean image of class 푋  and 푁  is the number of 

samples in class	푋 . Feature extraction based on PCA and LDA uses a linear 

projection subspace, which is not optimal when dealing with nonlinear information 

such as exists in biometric images associated, for example, with faces having 

different expressions and poses or palmprints with different effects of illumination 

effect and ageing. To overcome this limitation, a kernel method is proposed to 

extract nonlinear information which exists in biometric images by using kernel 

functions such as Gaussian function or Polynomial function where the interactions 

between elements of the features occur only through dot products [55, 56]. The 

kernel method is based on the transformation from an input space into a high 

dimensional feature space. Given the nonlinear mapping function Φ, the input data 

space 푅  can be transformed into a new high dimensional feature space F as 

Φ:	푅 	⟶ 퐹, x ⟼훷(푥). The new feature space F could have an arbitrarily large, 

possibly infinite dimensionality and thus the direct computation of linear projections 

such as in PCA and LDA is very computationally costly. However a method called 

the kernel trick can be used to compute dot products between mapped patterns using 

kernel representations of the form	푘(퐱,퐲) = Φ(퐱) • Φ(퐲) . These allow the value 

to be computed of a dot product in F without the need to use the mapping function 

Φ. Several linear projection methods have been proposed for use with the kernel 
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trick in order to extract complex and nonlinear information, such as the kernel PCA 

[57, 58] and kernel Fishers [59, 60]. 

        Kernel PCA has been implemented to extract the information for the digital 

recognition of handwriting and the results show that it is able to extract nonlinear 

features and achieve high recognition accuracy [55]. Mika [61] applied a kernel 

trick to LDA and the experimental results of the proposed kernel LDA (KLDA) 

showed KLDA is able to extract the high discrimination features in the feature 

space. Yang [62] used kernel Eigenface and kernel Fisherface to extract global 

facial features for the recognition process, and the result showed that kernel methods 

give superior results compared to Eigenface and Fisherface. Several nonlinear 

techniques based on the kernel trick have been designed to extract features for 

palmprint images [63, 64]. Although higher recognition rates have been achieved 

using the kernel method, there are still many problems such as the image 

orientations, variations in pose and illumination in biometric images. To overcome 

these problems a feature design procedure is computed as a pre-processing method 

to the original image. This approach is the unsupervised method which does not 

required a training process.  

       The feature design procedure generate new features from 2D biometric images 

using signal processing tools to convert raw data into a frequency domain which is 

believed to enhance the information in the image. The analysis of biometric images 

in the frequency domain is a commonly used method in image representation and 

recognition, and some work has used frequency domain techniques to extract 

information for facial recognition. Hafed [65] proposed the transformation of 

features of facial images to the frequency domain using a Discrete Cosine 

Transform (DCT), and performance was evaluated in terms of the recognition rates. 
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In this method, the whole face image is transformed to the frequency domain and 

only low frequency coefficients are preserved for classification. The analysis 

showed that the DCT achieved equal performance of the Karhunen-Loeve (KL) 

transform in the compression of facial information. By manually selecting the 

frequency band of the DCT coefficients, this recognition method achieved similar 

recognition accuracy with the Eigenface method. Jing [66] uses DCT to extract the 

holistic features of face and palmprint images and then proposed a method called 

two dimensional separability judgements to select the DCT frequency band. The 

DCT coefficients in a selected frequency band of the whole image are learned using 

linear discrimination technique to reduce dimension of feature vector, and a nearest 

neighbour classifier is used for classification. Li et al [67] applied the Fourier 

transform to extract information from the spatial domain to the frequency domain in 

palmprint images. In order to perform the classification task, the features in the 

frequency domain are compared with the templates stored in a database. Lai [68] 

applied the Fourier transform to the wavelet transform of face images in order to 

generate a feature vector that invariant to translation, scale and rotation on the plane. 

A new representation called the holistic Fourier invariant features is computed from 

the wavelet sub band which corresponds to the low frequency components of both 

vertical and horizontal directions of the original image. Another method to represent 

features based on the Fourier transform is the use of phase information instead of 

values of magnitude, as suggested by Meraoumia [69]. The phase information given 

by the 2D-DCT of the palmprint image is used to calculate similarity to the 

templates stored in a database by using phase correlation function, where a sharp 

peak is achieved for a similar image. In order to increase the performance of the 

recognition process, the similarity measure from the phase information of the 2D-
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DFT and feature representation using local 2D-DCT are fused at the matching score 

level.   

        Another approach to the representation of the biometric feature vector is to use 

a discrete wavelet transform where a multiresolution analysis of the signal is 

performed with localization in both time and frequency. Wavelet coefficients 

representing the contribution of wavelets in the function at different scales and 

orientations are computed by convolving the image with wavelet kernels such as the 

Haar and Daubechies wavelets. The wavelet decomposition technique is able to 

extract the intrinsic features and reduce the dimensions of data in the pixel images 

by dividing the original image into several sub images using low pass and high pass 

filters. Son [70, 71] proposed a feature fusion method for face and iris multimodal 

biometrics by concatenating the feature vectors extracted from the three levels of 

wavelet decompositions. Concatenation is performed using the lowest frequency 

components of the face and iris images which contain most of the information about 

the image. To further reduce the dimensionality of the fused feature vector and to 

enhance the discrimination power of the fused feature vectors, a linear projection 

method based on Direct Linear Discrimination Analysis (DLDA) is applied to the 

fused feature vector. Noore [72] fused multiple low frequency components of 

wavelet images from the four modalities of face, fingerprint, signature and iris to 

form a single composite multimodal biometric image. In this method, three levels of 

wavelet decomposition were computed separately for the different biometric traits 

and the low frequency components of each modality were then combined to form a 

fused feature image. Wang [73] also proposed feature fusion combining different 

biometric images from palmprints and palm veins to form a single fused image 

based on Mallat’s wavelet [74]. In order to preserve the ridges and veins in the 
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palmprint and palm vein images, fusion was performed based on the wavelet 

maxima detection rule and then the wavelet maxima of both images were combined 

to produce fused wavelet maxima. The fused image can be reconstructed using on 

inverse wavelet transform to give a fused wavelet maxima.  

 Recently, the Gabor wavelet feature has been shown to be effective in 

feature level fusion. The Gabor wavelet representation of a biometric image is a 

convolution of the image with a family of Gabor kernels which are similar to the 2D 

receptive field profiles of the mammalian cortical simple cells which exhibit 

desirable characteristics of spatial locality and orientation selectivity and are 

optimally localized in the space and frequency domains. Yang [75] used the Gabor 

wavelet to extract the information from fingerprint and finger-vein data and then 

fused it at the feature level. The new fused feature vector is constructed based on 

supervised nonlinear correlation analysis which is a method used to find a 

relationship between two sets of feature vectors. Raghavendra [18] concatenated the 

features of face and palmprint data in a Log Gabor domain in order to integrate the 

information at the feature level.  2D Log Gabor face and palmprint images are 

rearranged into the one dimensional feature vectors and then serially combined to 

produce a high dimensional fused feature vector. A feature selection method based 

on Particle Swarm Optimization (PSO) is used to select the most dominant 

coefficients and reduce redundancy in the fused feature vector in order to project it 

into a kernel discriminative space using Kernel Direct Discriminant Analysis 

(KDDA). Another method of feature fusion by concatenating Gabor face and 

palmprint images was proposed by Jing [32]. In their method, Gabor images of faces 

and palmprints are vertically concatenated to produce a high dimensional feature 

vector. To reduce the dimensions of the fused feature vectors and capture nonlinear 
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information, a kernel subspace method based on the discriminative common vector 

is used to project it into a new subspace. Yao [33] fused the information using PCA 

features extracted from Gabor face and palmprint images. The fused feature vectors 

are constructed by serially combining the face and palmprint feature vectors. Fu [34] 

also proposed to use the Gabor transform to extract important features in the face 

and palmprint, and then the high dimensional Gabor features are reduced using ICA. 

In order to combine the low dimensional features, a specific weighting value is 

introduced to the ICA features prior to combining then using concatenation.  

 

3.3 Local Feature Representation 

 In contrast to the holistic features where an entire image is used to compute 

the feature representation, local feature extraction methods extract the information 

from diverse levels of locality and quantify them precisely. The general idea of local 

feature extraction technique is to divide the image into several parts and then the 

information is extracted each part individually. Another method is to locate several 

components of features such as the eye, nose and mouth in a facial image, and then 

classify them using several matching methods. Anila [76] proposed using the Gabor 

transform with local regions of a face image in order to construct an independent 

feature vector. The analysis shows that fusing the match scores from each local 

region gives better results compared to concatenating the local features and 

classifying them by using a single classifier. However, this method requires frontal 

face images with less variation in poses and the complexity increases due to the use 

of a multiple classifier for each local region. Sanderson [77] proposed representing 

local features by using modified 2D-DCT coefficients computed in 8 x 8 sub block 

windows. A modified DCT is computed using the DCT coefficients by introducing 
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new coefficients for the first three original DCT coefficients where the new 

coefficients are computed from neighbouring blocks. By removing the first three 

DCT coefficients, it is believed that robustness to illumination changes increases, 

but a significant amount of discrimination information may be lost. Thus, to 

overcome the performance loss, it was suggested that the first three coefficients 

should be replaced with their proposed delta coefficients.  Classification of the face 

image is conducting by using maximum likelihood values, where the GMM is used 

to learn statistical information concerning the feature vector of the specific class. In 

the same year, Cardinaux [78] proposed an extended local feature vector from a 

block based DCT which integrates a degree of spatial relations via embedded 

positional information from each sub block window. The embedded information 

existing in the local features is captured by using GMM and a pseudo 2D Hidden 

Markov Model (HMM) where the latter achieved better performance. However the 

best trade-off in terms of computational time, robustness and discrimination 

performance is achieved by extended local features using GMM.  

 Extracting local features can also be accomplished by choosing certain parts 

of a biometric image instead of dividing the image into several sub blocks as above. 

Lucey [79] proposed to use several shapes in face to extract local features, where 

regions of a face image such as the eye, nose, mouth and eyebrow are modelled in a 

single Gaussian distribution. Their results showed that using eight Gaussian 

distributions to model eight facial regions achieved the lowest EER compared to 

methods that divided the image into several sub block windows. However, the 

experiment was conducted using a sub block window of 16x16 pixels, which is 

larger than the best result reported by Sanderson [77] that using 8x8 pixels with a 

50% pixel overlap. Liu [80] proposed a new flexible local representation called the 
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X-Y patch, and this method alleviates the requirement for pixel wise alignment and 

is robust to small spatial misalignment problems. The X-Y patch is a joint 

appearance and shape descriptor where the x-y coordinates are included in the patch. 

The information in the patch window is extracted by using the 2D DCT transform 

and then a new feature vector is constructed by concatenating the x and y 

coordinates with DCT coefficients. Statistical information in the new feature vector 

is then learned using GMM.  

 Another interesting method to extract and represent local features in the face 

[81] and palmprint [82] image use the local binary pattern (LBP), which is one of 

the types of image texture descriptor used in texture analysis. In this method, the 

image is divided into several regions from which the LBP feature distributions are 

extracted. The LBP method was originally used for texture description, and assigns 

a label to every pixel of an image by comparing the 3x3 neighbourhood of each 

pixel with a centre pixel value producing a result in binary number. Then, the 

concatenation histogram of the labels is used as a feature vector. Recently, Zhang 

[83] apply LBP in the magnitude of Gabor image to design a new object descriptor 

called the local Gabor Binary Pattern Histogram Sequence (LGBPHS). The image is 

convolved with a set of Gabor filters and each pixel value in the Gabor transform 

image is compared with its neighbours. The transformation image is then divided 

into non-overlapping rectangular regions and the histogram of each local region is 

concatenated to represent the original image. Zhang [84] also proposed the use of a 

Gabor phase to represent the local features based on a new local pattern called 

histogram of Gabor phase pattern (HGPP), which is able to encode the phase 

variations. The local Gabor phase pattern (LGPP) is able to encode the local 

neighbourhood variations by using a new local pattern called a local XOR pattern 
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(LXP) operator. As with the LBP extracted from Gabor magnitude, the 

transformation pattern of the LXP is divided into non-overlapping rectangular 

regions and then the spatial histograms are extracted and concatenated to represent 

the original image. Xie [85] proposed a Learned Local Gabor Patterns (LLGP) for 

face representation, which is a method based on Gabor features which defines 

cliques of features which appear frequently in Gabor features as the basic patterns. 

Compared to LBP, where the patterns are predefined and fixed, the new local 

patterns are learned from the patch set, which is constructed by sampling patches 

from the Gabor filtered image. In order to construct the representation of the image, 

each facial image is converted into multiple pattern maps and the histograms of each 

block image are concatenated together.  

  

3.4 Multi-resolutions Gabor Filter 

         There has been proliferation of Gabor transform used as a feature extraction 

and image representation method in the biometric recognition system. Local feature 

extraction using multiresolution analysis involves the convolution of the image with 

a set of Gabor filters computed for a specific region of the image. The Gabor 

transform or  Gabor wavelets, whose kernels are similar to the 2D receptive field 

profiles of mammalian cortical simple cells, are widely used in image analysis due 

to their biological relevance and computational properties. The multiresolution 

structure in the frequency domain is similar to that of the wavelets, but without the 

orthogonal properties. Gabor features are considered to span a frame that has many 

beneficial properties such as spatial locality and orientation selectivity, and are 

optimally localized in the space and frequency domains. Gabor wavelets can be 
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divided into an elliptical Gaussian and a complex plane wave defined as follows 

[86-88]. 

훹 , =
푘 ,

휎 푒 , ‖ ‖ / 푒 , − 푒 / 																						(3.1) 

where μ and υ are the orientation and scale of the Gabor kernels, 푧 = (푥, 푦),

and	‖•‖ denotes the norm operator. The wave vector 푘 , 	is defined as follows: 

푘 , = 푘 푒 ∅ 																																																										(3.2) 

where 푘 = 푘 /푓 and ∅ = 휋μ/8. 푘 	is the maximum frequency, and f is the 

filter tuning frequency, and the bandwidth of the filter is measured by variance 휎 

corresponding to the two perpendicular axes of the Gaussian. The Gabor kernels are 

similar since they are generated from one filter with different scaling and 

orientation. Each kernel is a product of a Gaussian envelope and a complex 

sinusoidal wave. The Gabor wavelet representation of an image is the convolution 

of the image with a set of Gabor kernels as defined in Eq. (3.3). Let I(x,y) be a 

grayscale of an image, then convolution of an image I and the Gabor kernel 훹 ,  is 

defined as follows: 

푂 , (푧) = 퐼(푧) ∗ 훹 , (푧)																																																(3.3) 

where 푧 = (푥,푦), * denotes the convolutive operator, and 푂 , (푧) is the convolution 

result corresponding to the Gabor kernel at orientation µ and scale v. By applying 

the convolutive theorem, each 푂 , (푧) can be derived from Eq. (3.4) using the Fast 

Fourier Transform (FFT): 

퐹 푂 , (푧) = 퐹{퐼(푧)}퐹 훹 , (푧) 																																											(3.4) 
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and the Inverse Fast Fourier Transform (IFFT) is:  

푂 , (푧) = 퐹 퐹{퐼(푧)}퐹 훹 , (푧) 																																								(3.5) 

Several parameters need to be considered in order to produce an image features 

which is related to the numbers and values of the Gabor filter frequencies and 

orientations of the Gabor kernels. The more frequencies and orientations are used, 

the better is the representation power of the Gabor features. By increasing these 

numbers, the shift sensitivity increases, thus allowing a more accurate determination 

of image texture information. However, the representation power is also affected by 

the effective areas of Gabor filters controlled by the bandwidth parameters. 

Generally, the bandwidth value can be set to 1.0 and the initial numbers of filter are 

8 orientations and 4 scales, producing 32 sets of Gabor filter images as shown in 

Figure 3.1. Multiplying biometric image with a set of Gabor filter produces 32 sets 

of Gabor images as shown in Figure 3.2. The effect of changing parameter values 

can be evaluated experimentally based on the discrimination power of face and 

palmprint images. It is not necessary to compute features at all locations due to the 

enormous overlapping of the filters when they are sufficiently spaced. 

 
Figure 3.1: Gabor filter image with different orientations and scales. 
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Figure 3.2: Gabor image of face modality. 

 

3.5 2D DCT Feature Extraction 

         The preceding sections, illustrated the feature extraction method using 

multiresolution Gabor features, which concentrate primarily on feature analysis 

using different orientations and scales. The main purpose of this section is to 

transform images from the Gabor feature space to the frequency domain using DCT, 

where an image is decomposed into a combination of various and correlated 

frequency components. The advantage of DCT is that it is able to extract the 

features in the frequency domain to encode different texture details that are not 

directly accessible in the spatial domain [88, 90]. In the method proposed here, DCT 

feature extraction consists of two steps. Firstly the DCT is calculated for each block 

of 2D Gabor images, and secondly some of the coefficients are remained to 

construct a feature vector.  DCT basis function in 8x8 windows is shown in Figure 

3.4. Given M x N pixels image, where each image corresponds to a 2D Gabor 

feature, DCT coefficients are calculated as follows [91]:  

퐹(푢, 푣) =
1

√푀푁
훼(푢)훽(푣) 푓(푥,푦) × cos

(2푥 + 1)푢휋
2푀 																																		 

× cos
(2푦 + 1)푣휋

2푁 							푢 = 0,1, … .푀					푣 = 0,1, … .푁								(3.6) 
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where	훼(푢) is defined as:   

훼(휔) =
1
√2

																				휔 = 0

1																표푡ℎ푒푟푤푖푠푒
																																							(3.7) 

 

f(x,y) is the image texture and in our case, this consists of Gabor features. The DCT 

coefficient is given by F(u,v) and in general its values are divided into three bands 

of low, middle and high frequencies. The low frequency band correlates with 

illumination with an average value in the image. High frequency represents noise 

and small variations in details, while the middle frequency coefficients contain 

useful information in the construction of the basic structure of an image which is 

believed to have high discriminant features. Different DCT coefficients correspond 

to different spatial information. The upper left coefficient in the DCT domain 

encodes most of the energy in the image which corresponds to low frequency 

information as shown in Figure 3.3. When the DCT subsets are expanded towards 

the right and down words, more high frequency information is captured, and thus 

more details of an image are displayed in space. Several methods have been 

proposed to effectively choose the DCT coefficient in the DCT domain; namely, 

zig-zag, 2D separability judgements, energy probabilities and polynomial 

coefficients derived from the DCT. The present utilizes the zig-zag approach which 

is found to produce superior results when dealing with Gabor features.  
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Figure 3.3: DCT coefficient showing most of the low frequency energy components 
concentrated in the top left corner of the image.  

 

Figure 3.4: 2D basis function of DCT transform in 8x8 pixels sub block window. 

 

3.6 Novel Compact Local Feature Representation 

        As mentioned in the Chapter 2, fusion at the feature level is believed to give 

better results by incorporating feature vectors which contain richer information 

which is nonlinear and captures different statistical properties. Therefore, a new 

feature extraction framework is proposed here to extract the compact local features 

that can be used in the matrix interleaved feature fusion framework proposed in 

Chapter 4. The proposed method focuses on the development of a new framework 

for feature extraction methods based on local frequency bands extracted at different 

scales and orientations. This method is able to extract important information in 

different orientations and scales, and is thus able to capture nonlinear information in 

M 

N 
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face and palmprint images. In order to eliminate illumination and pose invariant 

problems, texture analysis in a sub-block window is utilized as suggested in [92, 93] 

but our method no longer implements window overlap in order to reduce the number 

of features. It is also shown in the experimental result that the verification 

performance of the proposed compact local features is higher than that of existing 

local feature extraction methods using window overlap. Furthermore, the compact 

representation of low frequency components is able to eliminate high frequency 

components which normally contain noise and do not offer any benefits for 

discrimination power. In fact, most low frequency components of face and 

palmprint images carry high discrimination power, such as the shapes of the mouth, 

nose, eyes and principle lines and wrinkles [66], [94]. The framework of novel 

compact feature extraction is shown in the front processing part in Figure 3.5. The 

new method of feature fusion based on matrix interleaved is discussed in Chapter 4 

and the classification method based on the background model is discussed in 

Chapter 5. The new feature extraction method makes use of non-overlapping sub 

block windows to extract local features which contain independent information on a 

specific region of the image. Each sub block texture is pre-processed with a set of 

Gabor filters with different scales and orientations to capture the texture of an image 

which has different structures. A compact representation of the feature vector is 

computed using the Discrete Cosine Transform (DCT) for each Gabor image. By 

using the DCT, most of low frequency coefficients can be preserved by eliminating 

the high frequency coefficients using the zig-zag approach. 
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Figure 3.5: Overall block diagram of the proposed method. 

 

 
 

Figure 3.6: Compact local energy representation of local features. 

 

 

3.7 Patch-based Compact Image Representation  

          Information fusion at the feature level is believed to give better performance 

for classification due to the utilisation of complementary and the most 

discriminative features existing in both modalities. However, the success of feature 

fusion depends on the information contained in both modalities. Thus, it is believed 

that, by using an effective method to extract the most important features, this could 
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be beneficial to fusion itself. This section proposes patch based feature 

representation for feature level fusion utilising the frequency domain, which is able 

to extract multiresolution texture images. The proposed methods have three main 

beneficial features. Firstly the image is analysed in terms of local features in a 

process which can handle pose and illumination changes. Face and palmprint 

images are subdivided into several blocks and each block is treated independently. 

Independent features in each block are then used to estimate the model parameter. 

Secondly, each sub block image is analysed using Gabor kernels which have 

different orientations and scales. By using appropriate number of Gabor parameters, 

important information can be extracted from the spatial images, including wrinkles 

from the texture of the palm surface with unique orientations and the shape of face 

in which the nose, eyes and mouth all have different scales. Thirdly, most of the 

energy in the Gabor features is encoded by using DCT features, and only the energy 

with the most discriminative information is preserved. This technique not only 

reduces the dimensions of the feature vector but also helps in the separation of 

feature vectors during the classification process since high frequency components 

have already been removed. Given an image with  푖 regions 푖 = 1,2, … 9, as shown 

in Figure 3.6, the Gabor response for each region is given by 퐺 = {푅 ,푅 , … ,푅 }, 

where each region 푅  consists of 32 sets of Gabor images as shown in Eq. (3.8)-

(3.10): 

 

 

푅 =

⎝

⎜
⎛
훹(푥 ,푦 ;푓 , 휃 )							훹(푥 ,푦 ;푓 ,휃 ) 				•			•				• 			훹(푥 ,푦 ;푓 , 휃 )
훹(푥 ,푦 ;푓 , 휃 )								훹(푥 ,푦 ;푓 ,휃 ) 		•			•				• 			훹(푥 ,푦 ;푓 , 휃 )

•
•

훹(푥 ,푦 ;푓 , 휃 )								훹(푥 ,푦 ;푓 ,휃 ) 		•			•				• 		훹(푥 ,푦 ;푓 ,휃 )⎠

⎟
⎞

               (3.8) 
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푅 =

⎝

⎜
⎛
훹(푥 ,푦 ;푓 , 휃 )							훹(푥 ,푦 ;푓 ,휃 ) 				•			•				• 			훹(푥 ,푦 ;푓 , 휃 )
훹(푥 ,푦 ;푓 , 휃 )								훹(푥 ,푦 ;푓 ,휃 ) 		•			•				• 			훹(푥 ,푦 ;푓 , 휃 )

•
•

훹(푥 ,푦 ;푓 , 휃 )								훹(푥 ,푦 ;푓 ,휃 ) 		•			•				• 		훹(푥 ,푦 ;푓 , 휃 )⎠

⎟
⎞

             (3.9) 

 
 

푅 =

⎝

⎜
⎛
훹(푥 ,푦 ;푓 , 휃 )							훹(푥 ,푦 ;푓 , 휃 ) 				•			•				• 			훹(푥 ,푦 ;푓 , 휃 )
훹(푥 ,푦 ;푓 , 휃 )								훹(푥 ,푦 ;푓 ,휃 ) 		•			•				• 			훹(푥 ,푦 ;푓 , 휃 )

•
•

훹(푥 ,푦 ;푓 , 휃 )								훹(푥 ,푦 ;푓 ,휃 ) 		•			•				• 		훹(푥 ,푦 ;푓 ,휃 )⎠

⎟
⎞
										(3.10) 

 
 
 
퐷퐶푇 = 퐹 (3),퐹 (4),퐹 (5), … . ,퐹 (15)  
 
퐷퐶푇 = 퐹 (3),퐹 (4),퐹 (5), … . ,퐹 (15)  
 
 
 
 
퐷퐶푇 = 퐹 (3),퐹 (4),퐹 (5), … . ,퐹 (15)  
 
 
 
퐷퐶푇 = 퐹 (3),퐹 (4),퐹 (5), … . ,퐹 (15)  
 
 
퐷퐶푇 = 퐹 (3),퐹 (4),퐹 (5), … . ,퐹 (15)  

 

where	푥  and 푦  represent the sub block image in grey scale and 푓  and 휃  are the 

frequency and orientation of the Gabor image. The compact representation of the 

feature vector is computed by using the DCT transform and the most discrimination 

coefficient is selected by implementing a zig-zag approach. In the experimental 

work, it is demonstrated that using the first 15   coefficients is sufficient to produce 

the best performance, due to the removal of high frequency components and noise in 

the DCT coefficients when the number of coefficients is greater than 15. The 

compact frequency feature vector for each sub block image has 32x15 feature 

vectors denoted as 푀 . Each two dimensional image has 9 sub-block windows, 

and thus vertical concatenation produces 푀 = [푀 ∪푀 ∪푀 ∪

…푀 ] feature vectors. This preserves contains important information from both 

DCT coefficient 
in a sub block 
window 

DCT 
coefficient 
in the whole 
image 
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modalities, such as statistical properties and nonlinear information. It is believed 

that the fusion of this information will increase the discriminative power and have 

benefits for model estimation due to the increasing number of independent data 

points.  

       Feature fusion can be constructed by using concatenation methods as 

implemented in [16, 95-97]. Instead of using the concatenation process, a new 

framework of feature fusion based on matrix interleaved as proposed in Chapter 4 

can be applied to increase the statistical information in the fuse feature vector. In our 

method, compact local features of both modalities are concatenated and interleaved 

both of them to form a new feature vector. The proposed feature fusion method has 

the advantage of using different scales and orientations in the local feature vector 

whereas the method in [78, 92, 93] depends on local features extracted from 50% 

overlapping windows on the spatial image, where the relationship of each sub-block 

window is important to gain better discriminative power. The proposed method 

produces sufficiently independent feature vectors, which is important in estimating 

model parameters using the GMM. Previous studies have proven GMM to be an 

effective tool to capture the underlying statistical information in the single modal 

biometric feature vectors based on face and voice traits [99 - 101].  
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3.8 Experimental Analysis 

         In this section, the effective of the local feature extraction method is tested 

using a FERET face dataset [102, 103] and a PolyU palmprint dataset [104, 105] by 

virtually combining them to form multimodal biometrics. Both datasets have been 

released to the public and are widely employed as a benchmark in biometrics 

recognition analysis. This combination is acceptable since for each person these two 

modalities can be considered to be independent. The experimental setting is briefly 

described below and the performance analysis evaluated for verification and 

recognition tasks. Then, the proposed method is evaluated with different parameters 

in the multiresolution Gabor features. The size of sub-block windows is also 

examined to produce the best feature representation as well as to conduct a 

comparison with several existing local feature methods, some of which suggest the 

use of window overlapping in order to gain information about relationships between 

neighbouring block windows. Following that, the size of pixel overlap that gives the 

best feature representation is also examined. The number of DCT coefficients is also 

examined in order to find the best number that can be used to represent the face and 

palmprint images. Finally, a detailed comparison is made between the approach 

suggested here and some existing multimodal approaches using these two datasets.  

           The FERET database is widely used as a benchmark to measure performance 

in facial recognition algorithms. The proposed method randomly selects face images 

from fa, fb, rc and rd which have different levels of diversity in terms of gender, 

pose, illumination, hairstyle, expression and ageing. The image selection is acquired 

without any restrictions imposed on facial expression and with at least two frontal 

images shot at different times during the same photographic session. In this 

experiment, 1000 frontal face images corresponding to 200 subjects are randomly 
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selected such that each subject has six images of size 256 x 384 pixels with 256 gray 

scale values. From six images per subject, three images are randomly selected for 

training and three for testing. The centre of the eyes in an image is manually 

detected, and then scaling transformations align this position to predefined 

locations. The facial region is manually cropped to the size of 128 x 128 pixels and 

further normalized to zero mean and unit variance. Figure 3.7 shows some example 

of the facial regions used in the analysis which have been resized to 100 x 90 pixels. 

         PolyU datasets are publicly available and widely used as a benchmark to 

evaluate palmprint recognition performance. The palm images are collected in two 

separate sessions with an interval of around two months between them. Each subject 

consists of left palm and right palm images taken under different light sources and 

with a different focus of a CCD camera. 200 subjects are randomly selected and 

each subject consists of six images. Three randomly selected images are used for 

training and three for testing. The original size of an image is 384 x 284 pixels and 

the image is pre-processed to obtain the region of interest as suggested in [104]. 

Then, the image is normalized to zero mean and unit variance. Figure 3.7 shows six 

palmprint images of one subject taken in two sessions. In order to construct the 

virtual multimodal biometric datasets of the face and palmprint, each virtual person 

is associated with six samples of face and palmprint produced randomly from the 

face and palmprint samples of two persons in the respective databases FERET and 

polyU. Thus, the resulting virtual multimodal biometric dataset consists of 200 

subjects such that each subject has six samples of images. 
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Figure 3.7: Samples of face and palmprint images for one subject. 
 

3.8.1 Analysis of Different Scales and Orientations 

 

         The number of scales and orientations of Gabor filters is important in 

capturing the information existing in the texture of images. By using fewer 

orientations the classification performance may become degraded as insufficient 

features will be extracted from the texture of the images. Meanwhile, using too 

many orientations may increase data redundancy and noise. The number of scales 

also influences feature representation, and thus an appropriate number must be used 

for each patch window to have more access to features with high discriminative 

power. In order to demonstrate the effectiveness of multiple scales and orientations 

of Gabor features in extracting important information from the patch image, eight 

sets of orientations are used separately and each orientation is analysed with four 

different scales. Set 1 consists of 퐼 , , , , set 2 consists of  퐼 , , ,…  and set 3 

consists of  퐼 , , ,… . All of these orientations are combined with four different 

scales. Different numbers of scales gives different sizes of Gaussian envelop, and 

therefore the use of the proper size of scales is crucial. The method used previously 

[106, 107] suggests four scales and eight orientations to extract the face images, 

which will thus produce 32 sets of Gabor images. In these methods, 32 sets of Gabor 
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filters are used to extract global features which cover the whole of facial images. 

The proposed method in this study focuses on local features in small patch windows 

as well as different features from two modalities. Using the same setting of Gabor 

filters as used in unimodal biometrics may produce redundant features whose 

analysis might be time consuming and not useful in training the GMM.  

        In order to examine the best number of orientations and scales which produce 

superior performance, Figure 3.8 shows the analysis of EER for all scales and 

orientations. The lowest EER is 0.6% achieved using 8 orientations with 3 and 4 

scales. However, when the number of orientations is increased to 12, the EER will 

increase by 0.1% for 3 and 4 scales. This shows that using many orientations will 

not give the advantage to the extracted features. The performance is degraded when 

4 scales and 12 orientations are used to extract the sub block image. This is due to 

redundant information and noise being extracted, which will give less discrimination 

power. However, using fewer of scales and orientations, such as 2 scales with 4 

orientations, produces higher EER of 1.2% due to the fact that less information can 

be extracted from the image. In the present analysis, the best EER could be achieved 

by using 3 scales and 8 orientations. The analysis of recognition rate is shown in 

Figure 3.9, and the highest recognition rate of 97% was achieved using 3 scales and 

8 orientations.  
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Figure 3.8: Performance analysis of EER (%) with different number of 
scales and orientations of Gabor filter. 

 

 

Figure 3.9: Recognition rate of different scales and orientations. 
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3.8.2 The Effect of Size Patch Window  

      Local features are extracted from several sub-block windows from an image 

which are independent of each other. This analysis examines the effectiveness of the 

size of patch windows in yielding the best results. Most local features extracted 

from face images are analysed in several sub-windows, and the method used in [77] 

suggests the use 8x8 pixel size whereas in [92] suggests the use 50% pixel overlaps 

to incorporate the relationship between neighbouring blocks. In the analysis here, 

the size of window was varied from 40x40, 20x20, 16x16, 10x10 and 8x8 pixels, 

and multiresolution Gabor images computed from the original image in each patch. 

The existing methods of local features use the DCT energy from each patch window 

as a feature vector for the training process. However, for the proposed method it is 

believed that more information can be gained by using multiresolution Gabor 

analysis followed by computation of DCT coefficients from the patch window. 

Using non-overlapping windows for each patch will produce strongly independent 

features, and thus there will be less effect of illumination and pose invariants. We 

also demonstrated that almost similar performance can be obtained when using 

overlapping windows. This shows that multiresolution Gabor analysis in patch 

window can provide strong independent features where the relationships between 

blocks can be ignored without sacrificing good results. Figure 3.10 shows the 

analysis of EER with different sizes of sub block windows and different percentages 

of pixel overlapping. The results show that 40 x 40 pixels sub block windows give 

the lowest EER for all degrees of pixel overlap, and the lowest EER is 0.6% 

achieved by using non overlapping windows. This shows that the proposed method 

does not depend on pixel overlapping due to the rich information which can be 
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obtained in the features extracted from the proposed framework here that uses 

multiresolution analysis and low frequency information.  

      In the following analysis, non-overlapping windows are used for all sizes of sub 

block windows due to the encouraging results given in Figure 3.10. Figure 3.11 

shows the performance in terms verification rate given as Receiver Operating 

Characteristic (ROC) curve with different sizes of sub block windows. The best 

result is 98% GAR at 0.1% FAR achieved by using 40x40 pixel sub block windows. 

The performance is degraded when the size of sub block window is smaller than 

40x40 pixels. Using patch windows which are too small degrades the performance 

since information can be lost when convolving with the Gabor filter. This might be 

because some of the important parts of faces and palmprints are bigger than sub-

block windows, such as the nose, eyes and palm wrinkles. Using too large sub block 

window would involve too much information that could be lost when compressed 

with the DCT transform, since only limited numbers of DCT coefficients are 

preserved for the training process. Thus, the proposed method suggest to use 40x40 

pixels sub block windows to obtain the best representation of local features. 
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Figure 3.10: Performance analysis of EER (%) with different sizes of sub block 
window and pixel overlap. 

 
Figure 3.11: Analysis of the effect of different patch size on genuine acceptance 
rates. 
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3.8.3 The Effect of Different Number of DCT Coefficients 

        This analysis compares the performance of the system when local features are 

represented with different numbers of DCT coefficients. Again, the extracted local 

features are fused in a matrix interleaved method as discuss in Chapter 4. For each 

local patch window, 32 sets of Gabor images are extracted and the energy of each 

Gabor image is computed using the DCT transform. DCT coefficients consist of DC 

value, low frequency components, and high frequency components. Most 

discrimination features such as the shapes of the nose, eye and texture of palmprints 

exist in the low frequency components, while high frequency components contain 

noise and details of image texture. In order to employ the most valuable information 

in the DCT coefficients during the classification process, high frequency 

components need to be discarded and only low frequency components are 

preserved. This analysis examines the most effective size of DCT coefficients that 

will give the best results in terms of verification and identification rates. The DCT 

coefficients are varying from 5 to 40 coefficients and analysed in different sizes of 

sub block windows. Figure 3.12 shows that the lowest EER is 0.6% achieved when 

using 30 DCT coefficients extracted from 40x40 pixels sub block windows. When 

the number of DCT coefficients decreases less than 30 coefficients, the EER will 

increase as well due to insufficient information being available to discriminate 

between each class. Meanwhile, when the number of DCT coefficients increased 

larger than 30 coefficients, the EER will increase due to the effect of noise or high 

frequency components on the discrimination power. The effect of recognition rates 

when different numbers of DCT coefficients are used to represent the feature vector 

is also examined. In the recognition process, the system must be able to discriminate 

between subjects and thus it is more challenging than the verification analysis. The 
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highest recognition rate of 97% was achieved by using 30 DCT coefficients as 

shown in Figure 3.13. 

 

Figure 3.12: Verification performance analysis (EER rates) with different number of 
DCT coefficients and different size of sub windows. The analysis is tested on 
FERET-PolyU dataset.  

 

Figure 3.13: Recognition rates with different number of DCT coefficients extracted 
from different size of sub window. The analysis is tested on FERET-PolyU dataset.  
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3.8.4 Comparison of Local DCT Coefficients 

        The proposed local feature extraction method is also compared with several 

existing local feature extraction techniques based on the number of DCT 

coefficients, as shown in Figure 3.14 and Figure 3.15. The proposed method 

achieved the lowest EER of 0.6% and the highest recognition rate of 97% using 30 

DCT coefficients. The three other local feature extraction methods used in the 

comparison are the DCTmod2 [93], DCT_modified [78] and DCT overlap [93], 

which are used to extract facial features and then modelled as feature distributions 

using GMM. All of these methods use sub-block windows to extract local DCT 

coefficients from the original image without implementing multiresolution analysis 

which is a powerful tool for texture analysis. Compared to the method proposed 

here that use multiresolution analysis based on Gabor transforms, more information 

can be gain when using Gabor analysis on each patch window. In addition, it is 

found that by using Gabor analysis on each patch window, the use of window 

overlapping can be avoided, which is one of the steps that must be conducted in 

existing local features methods. These methods compute the feature vector based on 

a 50% window overlap in the small 8x8 pixels windows, and also suggest, that 8x8 

patch windows give the best local feature representation that can be used to train 

using GMM and HMM. However, in the method suggested here it was found that by 

using multiresolution analysis local features can be extracted in larger sub block 

windows producing feature vectors that are independent of each other due to the 

non-overlapping of sub windows. The DCTmod2 [93] method, replaces the first 

three coefficients with modified delta coefficients calculated from neighbouring 

blocks in order to reduce the effect of illumination on the first DCT coefficient, and 

incorporates vertical and horizontal neighbour information. Meanwhile, 



CHAPTER 3 
 

73 
 

DCT_modified [78] uses the same delta coefficient method and incorporates the x-y 

coordinates of the patch window. However in the present method, the feature vector 

is extracted independently and thus is suitable for training using GMM to learn the 

distribution of features because in the GMM analysis each feature vector is treated 

independently.  

 

Figure 3.14: Comparison of the proposed method with three existing local feature 
extraction method based on DCT transform. The performance is compared against 
the number of feature vector and verification rates (EER). 
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Figure 3.15: Comparison the effect of number DCT coefficient on the recognition 
rate (%) of the proposed local feature extraction method with existing DCT based 
local feature extraction. The analysis is tested on FERET-PolyU dataset.  

 

3.9 Summary 

      A new method to extract local features in face and palmprint images is presented 

in this chapter. The proposed method is based on multiresolution analysis using the 

Gabor transform to extract information in several sub block windows and then the 

DCT compact energy representation is computed. The extracted features vector has 

low dimensionality and contains low frequency information from the image, and 

thus is suitable to be used in the feature fusion framework proposed in chapter 4. 

The proposed feature extraction method has several advantages. Firstly, the 

extracted local features in the sub block windows are independent, and thus suitable 

to be trained using GMM. Secondly, the compact feature representation is able to 

preserve low frequency information and discard high frequency information that 
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contains noise, and thus it has high discrimination power in the classification 

process. Finally, the feature vector contains low dimensional features and thus the 

estimation of GMM components does not require a large number of data points and 

the estimated GMM parameter has a small number of coefficients, which is more 

efficient in terms of storage in database. From the experiments, the proposed local 

feature method achieves significant improvements in the recognition and 

verification analysis of multimodal biometrics compared to existing local feature 

methods.  
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Chapter 4 

Feature Fusion and Parameter Estimation 
 

 

4.1  Introduction 

 

       This chapter discusses the proposed new framework for the matrix interleaved 

feature fusion method and the determination of the statistical properties of the fused 

feature vector. The matrix interleaved method is different from the conventional 

concatenation method and it is able to increase the statistical information compare to 

the information given by single modal biometrics. Several existing feature fusion 

methods based on conventional concatenation are also contrasted with the proposed 

method. Then the effectiveness of using GMM in capturing the underlying statistical 

properties of the new fused feature vector is discussed. The classification process 

according to maximum likelihood used to measure the effectiveness of the proposed 

matrix interleaved method in recognition analysis is also demonstrated. The 

feasibility of the proposed method has been successfully tested using two 

multimodal datasets which are face and palmprint biometrics from FERET-PolyU 

and ORL-PolyU multimodal dataset. The effectiveness of the proposed method is 

demonstrated by comparing its performance against that of other multimodal 

biometrics using feature level fusion [32, 34, 35, 96, 108]. Finally, conclusions are 
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given concerning the integration of face and palmprint images in the new 

framework and the increased performance of the recognition system.  

 

4.2 Feature Concatenation 

       Most previous research into the fusion of biometrics data at the feature level 

uses concatenation methods. Concatenation can be performed after feature 

extraction, such as in the concatenation of magnitude information of Gabor images 

[11, 32, 37]. The Gabor image representations capture salient visual properties such 

as those relating to spatial localisation and orientation and thus superior 

performance is reported. A major drawback of this method is the high 

dimensionality of fused feature vectors and therefore computational complexity, due 

to the use of a Gabor filter bank with different scales and orientations. Fused Gabor 

images that contain nonlinear information are further processed to extract important 

information as well as to reduce feature dimensions using linear [33] and nonlinear 

dimensional reduction methods [32]. The nonlinear methods [55] achieve better 

performance than linear methods [45], [47], but are computationally demanding 

since the biometric images contain too much nonlinear information.  

        Instead of concatenating information after feature extraction, several methods 

concatenate features after dimensional feature reduction using approaches such as 

PCA, LDA and ICA. Yao [33] and Ahmad [108] have used PCA and LDA to 

extract information from two modalities and merged the feature vectors to form a 

long 1D vector. However, these linear feature reduction methods do not fully utilize 

the nonlinear information inherent that exists in the modalities used, and thus 

produce a merged feature vector with less discriminatory power. Concatenation can 
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also be undertaken with raw data (i.e. without pre-processing) using a feature 

extraction method [96], and here all the raw data is normalized to the same size and 

sorted into a long vector prior to the application of a subspace selection method to 

construct the transformation matrix. A new subspace selection method is used, 

based on linear discrimination algorithms. This method offers better computational 

speed, but is limited to problems where the raw data is highly nonlinear. To 

overcome the nonlinearity problem in raw data, a kernel trick is adopted to map raw 

data to high dimensional feature space.  

      To date, most feature level fusion methods use a concatenation process which 

serially combines features from two or more modalities to form a long vector. In 

order to extract important information and reduce dimensionality, linear and 

nonlinear feature extraction methods are used prior to and after the fusion process. 

By using a concatenation process that does not take into account the distribution of 

data in both modalities, some data may become redundant and overlap on each 

others. In reality, some of modalities have nonlinear distributions of features such as 

face images with different poses and expressions, or palm-print images with 

different levels of aging and thus utilizing linear subspace reduction techniques 

cannot fully exploit the information contained in these modalities. 

 

4.3 Framework of the Proposed Method 

       This section proposes and discusses a new methodology that uses non-

stationary feature fusion to efficiently integrate significant information from 

biometrics modalities, especially those such as face and palmprint images having 
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different statistical properties.  The novelty of this new framework of matrix 

interleaved can be summarised as follows: 

 A new structure for fusion using a concatenation method is introduced. The new 

structure will change the distribution of the original feature vectors by 

interleaving the extracted face and palm features to produce new features with a 

different statistical distribution. Compared to conventional methods which apply 

concatenation methods to merge feature vectors in order to form a single vector 

for classification purposes, the present method is designed to model the data 

distribution of the concatenation features and determine their various statistical 

properties. Concatenation using this new method has the benefit of using double 

data points compared to the conventional that use of only single data points. 

Higher discrimination power can thus be expected due to the presence of extra 

data points in modelling distribution.  

 The proposed method makes use of the new compact local features discussed in 

Chapter 3 to represent local features in the fusing process. This is more robust in 

terms of pose, expression and illumination compared to the use of global features.  

 The GMM is used to capture non-stationary information from the fused features 

vector. The advantage of GMM is that different types of fused data distributions 

can be represented as a convex combination of several normal distributions with 

their respective means and variances. Various mixture component parameters 

such as weight, mean and variance, of the data distribution are estimated using 

maximum likelihood (ML) algorithm [43, 109]. The Expectation Maximization 

(EM) algorithm is used to find the maximum likelihood estimation of the 

parameters of an underlying distribution from a given dataset when the data is 

incomplete or has missing values.   
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       In the new framework of feature fusion, local features are utilized based on 

spatial frequency extracted using a DCT method. Local features are superior to 

global features since they are more robust to changes in illumination and pose 

invariant. Even though DCT based features have been widely used for single modal 

biometrics, the feature fusion of face and palmprint using DCT coefficients has not 

been accomplished before. Furthermore, the proposed method uses only 15 DCT 

coefficients, where the first coefficient of DCT is removed since it is an average 

pixel value. Feature fusion is performed based on these DCT coefficients and the 

results show a significant improvement in the recognition rates compared to the 

conventional fusion process that uses the same or a greater number of DCT 

coefficients. The fusion of DCT coefficients in the new framework increases 

recognition rates by incorporating extra statistical characteristics in the fused feature 

vector. In the context of multimodal biometrics, existing methods using GMM 

classifiers are used in two different ways. Either GMM is used to learn the statistical 

properties of biometric in each single modal biometrics, and fusion is then 

performed using the likelihood scores given by each modality [110, 111]; or it is 

used to learn the distribution of matching score values given for each modality 

[112]. In this study however, GMM is used at an early stage of the fusion process, 

and thus most of the existing statistical properties during feature fusion can be 

captured. Instead of determining the distribution of scores in two modalities using 

GMM and combining the likelihood value given by two different GMMs, the 

proposed method can give better results because the learning process is undertaken 

with the fused feature vectors which contains more discrimination information 

required in the recognition process. The proposed fusion method for the integration 
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of face and palmprint data at the feature level using the new concatenation structure 

is shown in Figure 4.1. 

 

Figure 4.1: Overall block diagram of the new framework of the information fusion 
in multimodal biometrics system. 

 

 

Figure 4.2: Local feature extraction and matrix interleaved fusion method. 
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       Suppose that there are 푆 training images per subject for the face and palmprint, 

where 퐹 ,퐹 , …퐹  represent face images while 푃 ,푃 , …푃 		represent palmprint 

images. Each of the	퐹  and 푃 		is subdivided into m sub block windows with 8x8 

pixels, and every sub block window are overlaps by 4 pixels which corresponds to 

50% of the size of 8x8 pixels. Let 퐹 and 푃	become the 푖 × 푗 pixel images, and thus 

the total number of sub block window with 4 pixels overlapping for each 8x8 pixels 

window is given by 2 − 1 x 2 − 1  block windows. The important 

information in each patch window is extracted using the DCT transform, which 

produces a feature vector 푀 , , (푠 = 1,2, . .푆;푛 = 1,2, …푁;푑 = 1,2, …퐷) for face 

data and 푀 , , (푠 = 1,2, . .푆;푛 = 1,2, …푁;푑 = 1,2, …퐷) for palmprint data 

respectively. S is the number of training images, N is the number of block windows 

and D is the dimension of the feature vector. If we have 5 training images with 456 

sub block (100x80 pixels image, 8x8 window, 4 pixels overlap) and each patch has 

10 dimensions, the extracted features for the face can be rearranged as: 

푀 , , = 푀 , , ,푀 , , , … ,푀 , , , … ,푀 , , 																									(4.1) 

and the feature vector for the palmprint is given by: 

푀 , , = 푀 , , ,푀 , , , … ,푀 , , , … ,푀 , , 																											(4.2) 

Fusion is performed by concatenation in two ways: 1) concatenating face features 

followed by palm features as given by 푀 , , ⋃푀 , , ,	and 2) concatenating palm 

features followed by face features as in 푀 , , ⋃푀 , , . Both of these feature 

vectors represent the same subject but with different statistical properties. These two 

groups of feature vector are then stacked on top of each other to produce a fused 

feature vector as follows: 

퐹 , ,
⋃ 	 	 ⋃ = 푀 , , ⋃푀 , , 	,푀 , , ⋃푀 , , 																														(4.3) 
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where	푀 , , ⋃푀 , ,  for the 10 dimension is given by:  

푀 , , ⋃푀 , , = {푀 , , ∪푀 , , ,푀 , , ∪푀 , , ,푀 , , ∪푀 , , , … 

… ,푀 , , ∪푀 , , }													(4.4) 

and 푀 , , ⋃푀 , ,  is provided by: 

푀 , , ⋃푀 , , = {푀 , , ∪푀 , , ,푀 , , ∪푀 , , ,푀 , , ∪푀 , , , … 

… ,푀 , , ∪푀 , , }													(4.5) 

The combination of 푀 , , ⋃푀 , , and 푀 , , ⋃푀 , ,  is called non-stationary feature 

fusion. This method can be visualised in Figure 4.2. The fused feature vector is 

expressed in Eq.(4.3), where 퐹 , ,
⋃ 	 	 ⋃  has an extra dimension that will increase 

the discriminant power of the feature vector and facilitate the learning process. 

     The proposed fusion method based on matrix interleaved is able to capture 

different statistical properties when the DCT features from face and palmprint 

modalities are fused together. The feature spaces for face and palmprint modalities 

have their own statistical properties, such as means and variances. By using single 

modalities, some of these statistical properties may still overlap with each other 

even between different subjects. When two different modalities are fused together 

using the proposed matrix interleaved method, the statistical properties that exist in 

each modality are changed to a new form. The new feature space from the fusion 

process contains more reliable information retaining more of the statistical 

properties of the data than that from a single modality. For this reason the proposed 

matrix interleaved feature fusion is better at capturing different statistical properties 

of the data. Figure 4.3 shows the Gaussian mixture distribution of the single 

modality of facial features (Figure 4.3a) and the new Gaussian mixture distribution 

after the fusion process (Figure 4.3b and Figure 4.3c). From the plot of the Gaussian 
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mixture distribution, it is clear that when two feature vectors are fused together, the 

different distributions produced contain more statistical information and have higher 

discriminative power. Gaussian distributions in a two dimensional feature space still 

overlap with each other, while the new Gaussian distribution in three dimensional 

feature space is clearly separated. 

      The determination of complex feature distributions is a crucial part of achieving 

an accurate model to represent the correct distribution in the feature space. Figure 

4.3 shows the fused feature vector scatter for several groups or clusters. Using a 

single Gaussian distribution to estimate statistical information such as means and 

covariances can be used to reduce the complexity of the estimation process. 

However, as can be seen in the feature distribution, a single Gaussian distribution is 

not able to capture all of the statistical information which exists in the fused feature 

vector. Furthermore, using a single Gaussian estimation will lead to a simple types 

of classification such as Euclidean or Mahalanobis distance classifier. To overcome 

the limitations of single Gaussian models in estimating the fused feature 

distribution, it is proposed to use GMM to model the complex distribution of data in 

fused feature space. GMM has been used in single modal biometrics to model 

speech features in speaker recognition [115, 116] and facial features in face 

recognition systems [114]. GMM contains an infinite number of Gaussian functions 

and is suitable to capture the underlying statistical properties in each group or 

cluster in the distribution of fused features. Furthermore, the Bayes’ classifier based 

on GMM is calculated based on maximum likelihood values, which is better than 

using a distance classifier. Maximum likelihood values give a higher degree of 

certainty that the observed feature vector belongs to a certain group of subjects.  
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(a)                                                            (b) 

 

(c) 

Figure 4.3: GMM distribution in two and three dimensional feature space. In a two 
dimensional feature space (a), some of the feature points of different subjects still 
overlap. Each subject has their own statistical properties in terms of means and 
variances. When coefficients 1 and 2 are concatenated with coefficient 3, a new 
feature space as in (a) and (b) can be obtained. In the new feature space, the feature 
points of subjects 1 and 2 are well separated, and they also have different statistical 
properties compared to most in (a).  

 

4.3.1 Gaussian Mixture Models 

      The fused feature vectors developed above can then be classified using a 

classifier or pattern recognition method to identify a specific class to which the 

given test features belongs. In general, a statistical method is preferable since this 

will provide an interpretable form of the certainty of information along with 

tractable mathematical background [43]. Statistical methods also offer reliable basis 

for decision making, and thus a low risk option can be chosen. The training process 

for the feature vectors includes supervised learning, in which a group of known 
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feature vectors in a specific class is introduced to assist in determining its statistical 

properties. Then, these statistical properties are used to classify unknown 

observations and to estimate confidence values of the classification process. 

      The information in a specific class is represented in low dimensional features in 

terms of its probability density function (PDF) rather than using high dimensional 

features. Finding the appropriate PDF will lead to successful classification. A simple 

model, such as one using Gaussian distribution with only a single set of statistical 

properties can efficiently represent features that have normally distributed features, 

but more sophisticated models such as finite mixture models must be used to 

approximate the complex PDFs of features distributed in a non-Gaussian form. It is 

generally understood that a finite mixture model can estimate a wide variety of 

PDFs and become an interactive solution when a single Gaussian form fail to model 

a complex data distributions. The mixture can be formed using any type of basic 

distribution function such as Gamma and Beta, but multivariate Gaussian 

distributions is well known and widely use to model the PDFs. The M-dimensional 

random variable 풚 = {풚 }  follows a Gaussian mixture distribution when its PDFs 

푝(푦 |휃) can be represented by a weighted sum of normal distributions: 

푝(푦 |휃) = 휔 푝(풚 |휽 )																																																																																											(4.6) 

																= 휔
1

(2휋) / |∑ | / × 푒푥푝 −
1
2 풚 −  ∑ 풚 −  								(4.7) 

where	0 ≤ 휔 ≤ 1 and ∑ 휔 = 1, 푖 = 1,2, …퐾, K is the number of Gaussian 

components, and 휔 , …휔  are the priori probabilities of each component K. The 

whole set of parameters that describe each component is 휃 = [휃 ,휃 , …휃 ] with 

휃 = 휔 ,  ,∑  where   and ∑  are the mean and covariance matrix of each 
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component respectively. Obtaining an optimal set of the parameter 휃 is usually 

defined in terms of maximizing the log-likelihood of the PDFs to be estimated, 

using the existing independent identically distributed samples = [푦 , … 푦 ] . The 

log-likelihood function of i-th component is: 

ℒ 푦|휃 = ln 휔 푝 푦 |휃 																																																																																						(4.8) 

	= ln 휔
1

(2) / ∑
/ × exp −

1
2 풚 −  ∑ 풚 −  					(4.9)	 

Due to the missing label information in the label {풚 } , the maximum likelihood 

(ML) estimation cannot be determined analytically but it can be estimated using 

expectation-maximization (EM), which is widely used in applications involving 

tasks with incomplete data sets [119].  

      The EM algorithm consists of the two steps of expectation step and 

maximization step.  The EM algorithm generates a sequence of estimations of the 

set of parameters {휃(푡), 푡 = 1,2, … } by alternating expectation step and 

maximization until convergence reaches a certain threshold value. The expectation 

of Eq. (4.8) is;  

푄 휃; 휃(푡) = 퐸 ln 휔 푝 푦 |휃 																																				(4.10) 

		= 푃 푗|풚 ;휽(푡) ln 휔 푝 풚 |휽 											(4.11) 

where: 

푃 푗|풚 ;휽(푡) = 	
푝 풚 |휽 (푡) 푃 (푡)

푝 풚 ;휽(푡)
																																														(4.12) 
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					=
푝 풚 |휽 (푡) 푃 (푡)

∑ 푝 풚 |휽 (푡) 푃 (푡)
																																						(4.13) 

The maximizing step (M-step) is calculated by taking the derivatives of Eq. (4.11) 

with respect to θ and P respectively, and setting them equal to zero: 

휕푄 휃,휃(푡)
휕휃 = 0																																							(4.14) 

휕 푄 휃,휃(푡) +⋋ 1 − ∑ 푃
휕푥 = 0																																						(4.15) 

Substituting Eq. (4.11) into Eq. (4.15), gives a new updated parameter as shown in 

Eq. (4.16) to Eq. (4.18). Initialization of the parameter in the first iteration (t=0, 

θ(0)) is obtained by using K-means clustering. New parameters are then estimated 

in the iteration process. If 휃(푡 + 1)− 휃(푡) > ℰ, the algorithm will repeat the E-Step 

followed by the M-Step, where ℰ is the threshold value: 

																												푤 =
1
푁 푓(푗|퐱 ,훉 )																																																															(4.16) 

 = 	
∑ 퐱 푓(푗|퐱 ,훉 )
∑ 푓(푗|퐱 ,훉 ) 																																																										(4.17) 

∑ =
∑ 푓(푗|퐱 ,훉 ) 퐱 −  퐱 − 

∑ 푓(푗|퐱 ,훉 ) 																							(4.18) 

 

4.3.2 Recognition Process using Maximum Likelihood 

      During the classification process, the aim is to assign a class of test feature 

vectors to the model parameter that has the highest value of log-likelihood [115, 

116]. Classification process in GMM can be seen as the maximum likelihood rule 

(ML), where the given test feature vector suppose to produce the highest values of 
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likelihood. Let a group of S feature vectors belong to S class given by X = 

{푋 ,푋 , …푋 } and each of the	푋  has a non-stationary fused feature vector given by 

푥 = {푥 ,푥 , … ,푥 }. The S class is represented by a Gaussian mixture model using 

S model parameters given by  훉 ,훉 , … ,훉  where each model parameter	훉 =

퐰 , ,∑ , and	푘 = 1,2, …푀  where 푀  is the number of GMM components 

used to model the distribution. The objective of classification is to find the model 훉  

which has the maximum a posteriori probability of a given observation feature 

vector 푋 . This criterion can be written as: 

푆 = arg max 푝(훉 |푋) 																																									(4.19) 

By using Bayes’s rule, 푝(훉 |푋) can be written as: 

푆 = arg max
푝(푋|훉 )푝(훉 )

푝(푋) 																																					(4.20) 

Since 푝(푋) is constant for all class models, and 푝(훉 ) is a priori probability of the 

k-th model which is equally likely for all classes (푝(훉 ) = ), therefore the 

maximum of posteriori	푝(훉 |푋) can be changed to the maximum likelihood of 

푝(푋|훉 ) since 푝(푋) and 푝(훉 ) are constant parameters. This is shown as follows: 

푆 = arg max 푝(푋|훉 ) 																																								(4.21) 

Using log-likelihood and assuming the independence of observations, the 

identification process can be written as: 

푆 = arg max log푝(풙 |훉 )																											(4.22) 

where	푝(풙 |훉 ) is a mixture model given by Eq. (4.7). 
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4.4 Experimental Analysis and Discussion 

       The proposed method is evaluated using two sets of virtual multimodal datasets 

based on face and palmprint images. The construction of virtual multimodal datasets 

from the two separate face and palmprint datasets can be designed since the 

modalities are independent of each other. Several analyses of multimodal biometrics 

have also been evaluated based on virtual multimodal datasets [32, 33]. In the 

present analysis two sets of virtual multimodal datasets are constructed from the 

ORL-PolyU and FERET-PolyU dataset. Multimodal ORL-PolyU datasets contain 

800 images corresponding to 40 subjects acquired at different times, poses and 

facial expressions, while the FERET-PolyU datasets consist of 1200 images that 

correspond to 100 subjects with different poses, expressions and ageing.  

 

4.4.1 Performance Analysis using the ORL-PolyU Dataset 

      The ORL datasets developed at the Olivetti Research Laboratory, Cambridge, 

consist of 400 greyscale images for 40 subjects with 10 different images for each 

subject.  From 10 images per subject, 5 images are randomly chosen for training and 

the remaining 5 for testing. A greyscale image in ORL dataset has a resolution of 

112 x 92 pixels and all images are aligned in terms of their geometric position. 

Some of the images have an angle of 150 with varying poses and expressions. The 

facial expressions include smiling and not smiling, eyes open and closed and 

wearing glasses or not. The image is pre-processed by reducing the size to 100 x 80 

pixels and the important features are extracted using the DCT in a sub block  
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Figure 4.4: Sample of virtual multimodal datasets for 1 subject 
constructed from ORL face dataset and PolyU palmprint dataset. 

 

window. In order to create a multimodal ORL-PolyU dataset which has the same 

dimensions as the face images, the palmprint images are cropped to 100 x 80 pixels. 

The selection of the region of interest (ROI) is explained in [107]. To ensure the 

reliability of the virtual datasets, a computer program is used to randomly select and 

pair the face and palmprint images. This computer program has two main tasks: to 

randomly pair the face and palmprint images of different subjects and to randomly 

select the images used for training and testing.  The experiment is repeated 100 

times and the average performance is calculated. Figure 4.4 shows the combination 

of face and palmprint images. The face images show variations in ageing, pose style 

and angle, illumination, expression and hairstyle, while palmprint images show 

variations in line orientation, illumination and ageing. In order to validate the 

proposed method, 5 images are used for training and the other 5 are used for testing.  

      The first analysis examines the number of mixture components required to 

accurately model the fused feature distribution and the relationship between the 

local features to give the best statistical representation of the most important 

features. The images from both datasets are aligned at the same size. In this analysis, 

the number of mixture component is varied from 3 to 8 components while pixel 

overlap for the 8x8 DCT sub block window is changed from 0 to 2, 4 and 6 pixels. 

Figure 4.5 shows that the highest recognition accuracy is achieved by using at least 
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5 GMM components and a 4 pixel overlap in the sub block window. The use of 

more than 5 GMM components makes no difference to recognition accuracy, but the 

computational complexity involved and the time requires to estimate statistical 

distribution increases. On the other hand, using less than 5 components decreases 

performance because a limited number of normal distributions is available in the 

statistical model to capture the underlying statistical properties of the fused features. 

The selection of the number of mixture components depends on the complexity of 

the fused feature vector distribution. It should be noted that an appropriate number 

of mixture components should be carefully chosen to avoid both the problem of over 

fitting which arises from using too many GMM components and failure to 

determine distribution with insufficient GMM components. In this analysis, it was 

experimentally found that by using 5 GMM components to model the fused features 

extracted from a 4 pixel overlap in DCT sub block windows gives the highest 

performance. The statistical properties represented by 5 components each of which 

consists of a weight, mean and covariance are stored in the database as a low 

dimensional feature vector. The effect of pixel overlap on local features was also 

examined by varying the degree of pixel overlap in the horizontal and vertical 

directions. The extraction of local features assumes that each region in the face and 

palmprint image is independent. In practice, some of the regions are related to each 

other, such as the positions of the eyes and nose, and thus implementing pixel 

overlap incorporates information about features extracted from the neighbouring sub 

block windows. A previously used method [93] suggests that using pixel overlap 

can eliminate the effect of illumination in facial images. Another advantage of local 

feature extraction using overlapping pixels is its capability to generate an adequate 
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number of feature vectors in order to determine their statistical properties using a 

method such as GMM.  

        The overlapping pixels approach to local features has been proven to be 

effective in feature extraction [92, 93]. From the analysis shown in Figure 4.5, the 

best result is achieved by using an overlaps of 4 pixels. When their number is 

reduced to less than 4, performance dramatically decreases because fewer feature 

vectors are available in proportion to the number of sub block windows. If pixel 

overlap is increased, the number of sub block windows also increases, thus 

generating a sufficient number of feature vectors to train the statistical model. Based 

on the results in Figure 4.5, recognition accuracy decreases when pixel overlap is 

increased to 6 pixels. This is due to the extraction of redundant features when the 

degree of overlap covers more than 50% of the block size. When 6 pixels overlap 

are used, a higher number of mixture components are needed in order to increase the 

recognition rate.  

       The second analysis examines the effect of different numbers of fused feature 

vectors to the discrimination power, which will affect recognition rates. 64 DCT 

coefficients will be extracted from 8x8 sub block window, but not all of these lead 

to superior discrimination power. In order to select a smaller number of coefficients, 

a zig-zag method is utilized where only several coefficients are retained which 

correspond to low frequency information.  The discrimination power of the fused 

feature vector is examined by using vectors varying from 5 to 20 dimensions. The 

results in Figure 4.6 show that the best recognition accuracy of 99.7% can be 

achieved by using 15 DCT coefficients modelled using 5 GMM components. Note 

that using 20 DCT coefficients will not improve discrimination power but will 

increase computational complexity and the number of feature vectors stored in the 
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database. Some high dimensional features extracted from the DCT transform using 

zig-zag patterns consist of high frequency information, or noise, that affects the 

parameter estimation process. High frequency information is not suitable for 

discriminating face and palmprint images, whereas low frequency information 

represents the basic appearance of the faces and palmprints.  

 

Figure 4.5: Recognition accuracy of the proposed method with different number of 
GMM components and overlapping pixels in local features. The best recognition 
accuracy is achieved using 5 GMM components and 4 pixels of overlap. 
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Figure 4.6: Analysis of recognition rate (%) with different numbers of DCT 
coefficients. 

 

Figure 4.7: Comparison of the proposed matrix interleaved method with several 
existing feature fusion methods where the number of training images varies from 
two to five. The experiment is run on a ORL-PolyU dataset. 
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        The third analysis compares the proposed fusion method with several existing 

fusion methods that combine information at feature level. The number of training 

images is varied from 2 to 5 images in order to observe the effect of incorporating 

less statistical information during the training process. Three existing feature fusion 

techniques are evaluated: 1) the concatenation of Gabor images from face and 

palmprint data [32]; 2) the concatenation of LDA features extracted from Gabor 

face and Gabor palm images [108]; and 3) the concatenation of weighted ICA 

features extracted from Gabor face and Gabor palm images [34]. The results show 

that the proposed method only requires 4 training images to achieve the best result 

of 99.7% recognition accuracy. This compares to existing methods that needing at 

least 5 training images to achieve 99.5% recognition accuracy. From the analysis, it 

is clear that the proposed method could give better results by using fewer training 

images. The results shown in Figure 4.7 demonstrate that the matrix interleaved 

method can preserve more statistical information compared to the concatenation 

method. This can be clearly seen when two training images are used where the 

performance of conventional concatenation methods is 6% less than the proposed 

matrix interleaved method.  

       In order to validate the proposed method and to conduct a fair comparison, the 

results are compared with those from several existing methods which perform fusion 

at the feature level using the same datasets. All of these methods use 10 images per 

subject and 5 images each are used for training and for testing. When fusion at 

feature level is performed by concatenating the weighted features extracted using 

ICA, 99% recognition accuracy is achieved [34]. This method used the wavelet 

transform to extract global features from the face and palmprint images. The highest 

recognition accuracy of 99.2% was achieved using feature fusion based on user 
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specific weighted rules [35]. In this method, a specific user weight is applied during 

the concatenation of the feature vector.  Finally, a recognition rate of 99.5% was 

achieved when fusion is performed by concatenating features extracted by LDA 

from both modalities [108]. These three concatenation methods are totally different 

from the method proposed here in terms of the number of data points used since 

they do not take into account non-stationary information. The present method fuses 

the matrices and interleaves them to increase the number of data points, and 

moreover this method has the ability to learn non-stationary information. Table 4.1 

shows the recognition accuracy of the proposed method compared to existing 

methods which made use of Gabor filters to extract information and thus are more 

computationally demanding. In addition, the existing methods did not fully utilize 

the nonlinear information which exists in the different modalities when Gabor 

images are pre-processed by linear projection methods such as ICA, LDA and PCA. 

The proposed method also has the advantage that the low feature vector has small 

dimension and requires only 155 (5+ 5x15 + 5x15) feature coefficients, comprising 

5 for weight, 5x15 for means and 5x15 for diagonal covariance when modelled by 

using 5 GMM components. 

 

Table 4.1: Comparison of the proposed method with the existing 
method in terms of recognition rates (%) using ORL-PolyU 
datasets. 

 
Method Top recognition rate  

Yao et al’s method [34] 99.2% 
Lu et al’s method [35] 99.0% 
Ahmad et al’s method[108] 99.5% 
Proposed method 99.7% 
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4.4.2 Performance Analysis using FERET-PolyU Dataset 

      In this experiment 100 subjects were randomly selected, each with six frontal 

images of which three each are used for training and testing. The facial images in 

this datasets were captured under various levels of illumination, different facial 

expressions and poses ranging from angles of 15o, to 60o. Each image has 

384x256 pixels size with 256 grayscales. Most of the images have different size of 

frontal image including the background and body chest region. The six images per 

subject used in this experiment are selected among the “fa”, “fb”, “rb” and “rc” 

which belong to different pose, aging, expression and pose angle.  

 

 

 

Figure 4.8: Samples of virtual FERET-PolyU multimodal datasets with variations in 
illumination, pose, expression and ageing. 
 

      In order to construct virtual multimodal datasets for the face and palmprint 

images, 100 subjects are randomly chosen from the FERET face and PolyU 

palmprint datasets; with 6 images per subject. A computer program was used to 

randomly select and pair the face and palmprint images in order to construct a 

virtual multimodal dataset. The computer program first randomly paired different 

subject of face and palmprint images; and secondly randomly selected images to be 

used for training and testing.  The experiment was also repeated 100 times in order 

to get a reliable results and overall performance was computed based on the average 
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value. For each experiment, different subjects from face and palmprint images are 

paired together and different images used for training and testing. The facial images 

varied in terms of illumination, ageing, expressions and pose style and angle, while 

the palmprint datasets varied in terms of illumination, line orientation and ageing. 6 

images from face and palmprint datasets for each subject are paired together as 

shown in Figure 4.8.  

        In this experiment all facial images were manually resized and cropped using 

centre of eyes to a size of 100x80 pixels. The images were then normalized using 

histogram equalization. The first analysis investigated the best possible number of 

GMM components to capture statistical information in the fused feature vectors. 

The FERET-PolyU multimodal dataset contain images that are different in terms of 

ageing, hairstyle, pose and illumination, and thus the distributions of features are 

expected to be highly nonlinear and non-Gaussian. The results in Figure 4.9 show 

that the highest recognition accuracy of 97% was achieved when using 9, 11, 13 and 

15 GMM components. From this experiment with the FERET-PolyU datasets, it is 

suggested that 9 GMM components are required to accurately model the fused 

feature in order to reduce computational complexity and memory usage. In this 

analysis, fused feature vectors were extracted using an 8x8 DCT block window with 

different degree of pixels overlap varying from 0 to 6 pixel and the best results were 

given by the 4 pixel overlap.  By convolving the 100x80 pixel image using 8x8 

DCT block window with 4 overlapping pixels, 456 feature vectors were produced 

per image. A training process was carried out using 3 training images, and thus the 

total number of feature vectors used to train the GMM was 1368 (456x3). If the 

feature dimension of DCT coefficients is limit to the first 15 coefficients, the 

estimated parameters that are required to represent 9 GMM components are reduced 
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to 279 (휔 = 9, = 9	 × 	15	and∑ = 9	× 15) feature vectors. This is only 20.4% 

the original 1368 feature vectors and thus requires relatively smaller storage space 

in the database. The size of the feature vectors can be further decreased by reducing 

the number of GMM components, but performance would then be degraded as the 

number of single Gaussians is insufficient to model the fused feature distribution. 

This can be seen in Figure 4.9, when the number of mixture is reduced to 5 

components, and the estimation of parameter (feature matrix) is reduced to 159 

(휔 = 5, = 5	 × 	15	and∑ = 5	 × 15) feature vectors which is 6.8% of the original 

image size of 2280. However, the recognition rate dropped to 85%, and hence, there 

is a trade-off between recognition accuracy and the number of mixture components. 

The results in Figure 4.9 also show that when pixel overlap is reduced to 0 or 2 

pixels, performance also declines, for several reasons. Firstly, the number of the 

feature vectors extracted from the 8x8 DCT block window reduces with a reduction 

in pixel overlap, and therefore the training process does not involve an adequate 

number of feature vectors to capture the statistical characteristics. Secondly, pixel 

overlap takes into account the relationships amongst neighbouring blocks. If pixel 

overlap is reduced, some important information about the relationship between two 

neighbouring blocks may be lost, thus reducing the performance of the system. A 

higher pixel overlap of 6 in Figure 4.9 produces similar performance to that shown 

by 4 pixels. The number of feature vectors is increased with an increase in pixel 

overlap, but is increases redundant information and is computationally costly. From 

the experimental results, it is suggested that 4 pixel overlap is sufficient to produce 

good results using the proposed fusion framework. 
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Figure 4.9: Analysis of recognition rate of the proposed method with different 
number of pixels overlapping in 8x8 DCT block windows with different numbers of 
GMM mixture components. The best recognition accuracy is achieved using 9 
mixture components and 4 pixels overlap. 

 

 

      The second analysis investigated the effect of numbers of features extracted 

using various sizes of sub block windows. This was carried out to find the best size 

of DCT windows from which the most discrimination features can be derived. The 

different sizes of DCT block windows used are 8x8, 12x12, 16x16 and 24x24 

pixels. Table 4.2 gives a summary of the recognition rates achieved for each size of 

DCT block window. The highest recognition rates of 97% achieved by using 8x8 

sub block window. Using a smaller sub block window is advantageous in reducing 

the computational time required to transform the image into the DCT domain. It was 

found that the highest recognition rate could be achieved using 23% of the 

coefficients in each of the sub block windows. By using larger sub block window, 
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more DCT coefficients are produced, and thus large amount of feature vectors are 

needed to accurately estimate the GMM components. The effect of a small number 

of feature vectors to the different size of sub block window can be seen in Table 4.2 

where the performance is degraded in the larger size of sub block windows due to an 

insufficient number of feature vectors to estimate the GMM mixture components. 

For example, a 16x16 sub block produces a 128 features with 30 dimensions, while 

8x8 sub block produces a 456 feature vectors with 30 dimensions which is triple 

compared to 16x16 sub block window.  

 

 
Table 4.2: Analysis of recognition rates (%) given by different size of sub block 
window model by using different number of GMM components. 
 
Sub block window size Mixture components 

3 5 7 9 11 13 
8x8 86 % 96% 97% 97% 97% 97% 

12x12 85% 84% 87% 87% 86% 85% 
16x16 84% 85% 83% 86% 81% 73% 
24x24 80% 88% 87% 70% 70% 68% 

 

 

        The third analysis again examined the effect of varying dimension of DCT 

coefficients on the performance of the proposed method. Varying this number will 

produce different sizes of component parameters which need to be stored in the 

database. It is known that not all DCT coefficients contain high discrimination 

power, thus by removing several coefficients; an effective size of feature vector can 

be achieved without scarifying the performance of the system. In order to identify 

the best dimensions of DCT coefficients to produce the best results, 4 different 

dimensions of DCT coefficients are examined such as 5, 10, 15 and 20 coefficients. 

It must be noted that, using GMM to capture the statistical information in a limited 
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numbers of feature vectors requires small dimensions of feature vectors in order to 

accurately estimate the model parameters. Figure 4.10 shows that 15 dimensions of 

DCT coefficients can give recognition rates up to 97% when the distribution of 

fused features is modelled using 7 GMM components which require 225 feature 

vectors. Using more than 15 dimensions of DCT coefficients does not improve the 

recognition rate except when a smaller small number of GMM mixture components 

are used. Reducing the dimension of DCT coefficients to 5 also has no significant 

effect on recognition rate. The highest recognition rates are achieved by using 15 or 

20 dimensions of DCT coefficients where 15 dimensions is preferable in order to 

reduce memory storage.  

       In the fusion process, only a few DCT coefficients are preserved using the zig-

zag method, and low frequency components that contain most of the discrimination 

power are used while high frequency components that do not contribute to the 

classification process are removed. The proposed method uses sub block window of 

8x8 pixels to extract local DCT features. Each block window will produce 64 DCT 

coefficients and the fusion process only uses 23% of the total number of DCT 

coefficients (15 DCT coefficients) in order to achieve the best results.  In addition, 

concatenating selected DCT coefficients from two different modalities will further 

increase the discrimination power in the feature space.  
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Figure 4.10: Recognition rate of the proposed method when fusion is 
performed using different numbers of DCT coefficients and numbers of 
GMM components vary from 1 to 13.  

 

Figure 4.11: Analysis of recognition rates with different numbers of DCT 
coefficients using FERET-PolyU multimodal datasets. The highest recognition 
rate is given by matrix interleaved method using 15 DCT coefficients for each 
subject and the information is captured using 7 GMM mixture components.  
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Combining DCT coefficients from two different modalities can better represent the 

data in the feature space compared to the use of DCT coefficients derived from 

single modalities. The fusion of low frequency components reduces the dimensions 

of the feature vectors while increasing the statistical information, and therefore can 

eliminate the problem of high dimensional feature vectors. The use of single 

modalities needs high dimension of DCT coefficients to increase performance, 

whereas the fusion method here only uses small dimension of DCT coefficients to 

achieve the best results. Figure 4.11 shows the performance of the proposed method 

compared to the use of a single modality when different numbers of DCT 

coefficients are used in the fusion process.  The proposed method achieves the best 

result of a 97% recognition rate when 15 DCT coefficients are used during the 

fusion process. Meanwhile, the use of a single modality requires 40 DCT 

coefficients to achieve the best results of 80% accuracy for palmprint and 75% 

accuracy for face images but these recognition rates are 17% or more lower than 

that of the proposed method. Based on this analysis, the proposed fusion method can 

reduce the dimension of feature vectors while increasing the performance of the 

system. This is because matrix interleaved produces more statistical information 

during the feature combination process.  

        The performance of the proposed method was compared with several existing 

methods that use a single modality, of face or palmprint in order to investigate the 

effectiveness of multiple modalities. The proposed matrix interleaved method 

combining multiple modalities was found to produce higher recognition rates even 

when the feature dimension of the single modality is higher than the multiple 

modalities. This is due to the ability of the fusion method to capture more important 

information during the fusion process. The results in Figure 4.12 show that feature 
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fusion using only 15 DCT coefficients, which results in a vector with 30 coefficients 

can produce the highest recognition rate of 97%. This is higher than the rates 

achieved with single modalities using 40 DCT coefficients, with an accuracy for 

face images is 69% and for palmprint is 79% when the statistical information is 

captured using 7 GMM components. The proposed method has also been tested with 

different numbers of DCT coefficients such as 5, 10, 15 and 20, and the best result 

was given by 15 DCT coefficients of 97% recognition accuracy. It appears that 

when the number of GMM components is increased to more than 7, there are no 

significant improvements in recognition rates. This suggests that the proposed 

method could achieve optimum recognition accuracy using 7 GMM components 

and 15 DCT coefficients. It has also been demonstrate that the proposed matrix 

interleaved fusion method is better than conventional feature fusion using 

concatenation methods. The conventional concatenation method only achieved 89% 

recognition accuracy when 7 GMM components and 15 DCT coefficients were 

used, while the proposed method gives 97% recognition accuracy. The analysis 

shows that feature fusion using matrix interleaved always gives a better result even 

though concatenation is performed on smaller feature vectors. This analysis shows 

that the proposed matrix interleaved feature fusion is able to preserve the most 

important statistical information which results in the most discriminating power. It 

is also shown that GMM is a suitable statistical tool to capture the underlying 

statistical characteristics of the fused feature vectors.  

        In order to validate the proposed method, the results were compared with those 

of several other multimodal methods using the same FERET and PolyU datasets. 

The comparison is based on the highest recognition accuracy achieved in previous 

studies [32], [96] as shown in Table 4.3. The method in [96] used three modalities in 
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order to increase the recognition accuracy to 93.7%, while the method in this study 

uses only two modalities to achieve 97% recognition accuracy. Another study [32] 

made use of a kernel method to extract the nonlinear information embedded in the 

fused feature vector to produce a recognition rate of 92%. The method proposed 

here makes use of statistical modelling based on GMM and is able to model 

complex fused data and capture nonlinear information from both modalities, thus 

producing a better result of 97%. 

 

Figure 4.12: Comparison of the proposed method with several existing methods 
where the number of GMM mixture components is varied from 1 to 13. The highest 
recognition rate is given by matrix interleaved with 15 DCT coefficients and learnt 
using 7 GMM mixture components. The experiment is tested using FERET-PolyU 
dataset. 
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Table 4.3: Comparison of the highest recognition rates (%) of the propose 
method and those of existing multimodal fusion methods using face and 
palmprint images. 
 

Methods Modalities Recognition rates 

Method by Zhang [96] FERET-PolyU-USF 93.7% 

Method by Jing [32] FERET-PolyU 92% 

Proposed method FERET-PolyU 97% 

 

 

 

4.5 Summary 

       A new method to fuse the information at feature level is presented in this 

chapter. The proposed method is based on matrix interleaved feature fusion where 

local feature vectors of face and palmprint images are combined to form a new 

fused feature vector. The proposed matrix interleaved feature fusion has several 

advantages compared to conventional concatenation methods. The number of data 

points is larger than in conventional methods, and thus GMM is able to accurately 

estimate the model parameters. The fusion method also produces richer statistical 

information in the new fused feature vector due to the two ways concatenation 

method applied in the feature vectors. The experimental analysis using FERET-

PolyU and ORL-PolyU datasets shows that the proposed matrix interleaved feature 

fusion give better recognition results than the conventional concatenation methods.  
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Chapter 5 

Likelihood Score Normalization 

 

5.1 Introduction 

      This chapter discusses and implements a likelihood normalization method using 

the likelihood score given by a background model in order to increase the 

performance of the verification process. The propose method makes use of all of the 

training data in the database to train the background model, and then its likelihood 

score is computed to represent the imposter score for each claimed subject. 

Background model has been used in speaker recognition [115, 117] and faces 

recognition [78] with very promising results. However, the implementation of a 

background model to compute the imposter likelihood score in the feature level 

fusion of multimodal biometrics is new, and this method is expected to be able to 

offer superior results in the verification process. Thus, this chapter discusses the 

motivation for using a background model to model the imposter feature distribution. 

There are two approaches to compute the background model. Firstly, all subjects are 

represented in a single model called the universal background model [119]. 

Secondly, each claimed user will have a group of their own background models 

called cohort background model [120]. Finally, several experimental analyses are 
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conducted to validate the propose method by the comparison of its effectiveness 

with a baseline method that does not use score normalization.  

5.2 Likelihood Score Normalization 

        A common problem associated with multimodal or single modal biometric 

recognition is the effect of undesired variation in the input data. Such variation is 

caused by the effects of data capturing devices and various non-ideal operating 

conditions such as background noise in face image and sensory noise in palmprint 

image. Such variations affect biometric matching scores due to the differences 

between the input and template. This problem can strongly influence the overall 

usefulness of the biometric recognition process. Thus, an important requirement for 

the effective operation of a multimodal biometric system is the presence of the 

capability to minimise the effect of variations in the biometric feature vector. This 

will then increase recognition accuracy despite the presence of variation caused by 

contamination in the biometric data involved. This chapter presents an investigation 

of the effect on the verification accuracy of multimodal biometrics of introducing 

likelihood score normalization using a background model framework. The main 

purpose of implementing likelihood score normalization in this research is to 

differentiate whether the likelihood score value given by a claimed user is known or 

unknown.  

        In biometric verification systems the purpose of likelihood score normalization 

is to separate test feature vectors whether belong to genuine or imposter [117]. This 

verification is more difficult compared to the identification task even though only a 

binary decision to accept or reject is required. The verification system will decide if 

the input features originated from the claimed user, with a well-defined model, or 
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not the claimed user, which is ill-defined. The general hypothesis to be tested states 

that, for a given input feature Y and a claimed identity, the choice is between 퐻  and 

퐻  such that [115]: 

퐻 :푌	푖푠	푓푟표푚	푡ℎ푒	푐푙푎푖푚푒푑	푢푠푒푟 

퐻 :푌	푖푠	푁푂푇	푓푟표푚	푎	푐푙푎푖푚푒푑	푢푠푒푟 

The optimum test to decide between 퐻  and 퐻  required a likelihood ratio test as 

shown below: 

푝(푌|퐻 )
푝(푌|퐻 )

≥ 		휃				푎푐푐푒푝푡	퐻
< 			휃			푟푒푗푒푐푡		퐻 																																											(5.1) 

where 푝(푌|퐻 ) is the probability density function for the hypothesis 퐻 (genuine 

user) computed for the given test feature vector Y. Meanwhile, 푝(푌|퐻 ) is the 

probability density function for the hypothesis 퐻  (imposter user) evaluated for the 

given test feature vector Y. These two probability density functions are also refer as 

likelihood of the hypothesis 퐻  for a given test feature vector. The likelihood score 

of these hypothesis is then compared with the pre-defined decision threshold θ 

whether to accept or reject 퐻 . The crucial task in the successful of the verification 

process based on likelihood ratios or likelihood score normalization is to determine 

the appropriate techniques to model and compute the two likelihoods 푝(푌|퐻 ) and 

푝(푌|퐻 ).  

        The basic components in the verification system based on likelihood score 

normalization are shown in Figure 5.1. The input to this stage is typically a 

sequence of independent feature vectors representing important information existing 

in the biometric modalities. Normally, specific types of pre-processing method are 

used to generate low dimensional feature vectors and these depend on the type of 

modality such as 2D biometric image or 1D signal of voice. The pre-processing 
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method used to produce the input feature vector 푋 = {푥 ,푥 , …푥 } must be the 

same as that used to train the model. This is to make sure that the trained and test 

feature vectors come from the same feature space.  

 

  

  

                                                                                                                                  
(x) 

 

 

 

   

 

Figure 5.1: Basic components in the verification system that use likelihood score 
normalization computed from a user background model.  

 

        The input feature vectors in Figure 5.1 are used to calculate the likelihood 

score of a claimed user whether it is a genuine user (퐻 ) or not from a claimed user 

(퐻 ). Generally, hypothesis 퐻  can be represented by a model given by 휆  that 

characterizes the genuine user in the feature space of x. On the other hand, 

hypothesis 퐻  is represented by a model 휆  which belongs to a degree of 

certainty that a claimed user is not a genuine user. Such model that can be used to 

represent 휆  and 휆  can be a single Gaussian function consisting of the 

parameter mean and covariance matrix(휇,훴). Another type model that is able to 

represent more complex distributions of 휆   and 휆  is a Gaussian mixture 

model (GMM), where the model parameters are denoting as weight, mean and 

covariance matrix{휔 ,휇 ,훴 } . By using two of these models, the likelihood ratios 

Claim user 

Background Model 

User 1 

User 2 

User M 

푥 	푥 	푥 	… . .푥  
Input Feature Vector 

훷(x) > 	   Accept 
훷(x) ≤ 	   Reject 
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of genuine and imposter users can be expressed as 푝(푋|휆 )/푝 푋|휆 . The 

likelihood ratio in the logarithm form can be expressed as follows: 

훷(푋) = log푝(푋|휆 ) − log푝 푋|휆 																										(5.2) 

The likelihood ratio 훷(푋) is then compared to a threshold 휃 and the claimed user is 

accepted if 훷(푋) > 휃	and rejected if 훷(푋) ≤ 휃. The likelihood score normalization 

will measure the degree of similarity between a claimed user likelihood score for a 

given test feature vectors  and a likelihood score of non-claimant model. The 

success of likelihood score normalization depends on the accuracy of 휆  and 

휆 . Given a set of training feature vectors, the model 휆  can be accurately 

estimated. However, the model for 휆  is less well defined, it must subsequently 

represent the entire space of possible alternatives to the claimed user.  

      In the recent years, there have been several studies on likelihood score 

normalization method using the Bayesian framework to reduce intra-class variations 

in biometric verification systems. The general problem in biometric verification is to 

minimise overlapping features in the distributions of genuine users and impostors, 

so that it is possible to verify or reject a claimed user with a high degree of 

confidence using a certain threshold value. To date, a number of normalization 

techniques using background models have been established, mainly with the aim of 

attempting the problem of genuine and imposter matching scores overlapping during 

the verification process. In general, this technique has been successfully applied in 

the research of speaker recognition [115, 119], and has recently been extended to 

face recognition [78, 114]. The original approach used this in method, which 

developed for speaker recognition, is based on the concept that if inconsistent events 

in the test utterance cause a speaker’s scores against the claim model to degrade, 

then the scores obtained for the same speaker against certain other background 
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models will also be affected in the same way. This will cause the ratio of the score 

for the target model to a static of scores for the considered background models 

remains relatively unchanged. Currently, two established types of background 

model have been developed, which are the universal background model and cohort 

background model. There are discussed in the next section.  

 

5.3 Universal background model Normalization 

      This method involves the estimation of parameters in the background model 

푝 푋|휆  using a pool of features from all training images. This kind of model is 

normally referred to as a world model [118] or the universal background model 

[119]. Important information in the background model is captured by using GMM to 

represent the probability density functions of the distribution of features for all users 

in the system. In practice, the number of background users should be as large as 

possible in order to better model imposter distribution. Parameter estimation for a 

user model can be adapted from the parameters of universal background model 

which has been established. Figure 5.2 shows the framework of parameter 

estimation for a user model adapted from the background model.  

 
Figure 5.2: Parameter estimation of the user model adapted from the background 
model. 
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        There are several approaches that can be used to derive the background model 

when fused feature vectors from all training users are available. The basic approach 

is to simply pool all features to train the background model using the EM algorithm. 

Using this method, pooled data must be balanced over the populations of all users so 

that there is a balance between male and female feature distributions. Lack of 

balance between male and female users would produce a final model that would be 

biased towards a dominant population. Another approach is to train the background 

models based on different subpopulations, such as one for males and one for 

females and then to pool the subpopulation models. This approach is believed to 

have advantages when the data in the training population is unbalanced. Two of 

these approaches are tested under speaker verification, for example when the 

difference between male and female voices is very significant [115]. In the present 

method, face and palmprint images from different genders is not a crucial issue, and 

thus the background model is trained by using pooled data from both genders. The 

GMM model parameters for a specific class can be derived by adapting the 

parameters of the background model using the training feature vector from that 

class. The parameters of class specific model are derived by updating the well 

trained parameters in the background model via adaptation process. This method 

provides a tighter coupling between the class specific model and the background 

model, thus giving a more rapid estimation process which can avoid parameter 

initialization. In addition, this method is also suitable when there is limited number 

of feature vectors available to train the class specific model, as shown in the 

experimental analysis.  

      The parameter adaptation of the class specific model from the background 

model parameter consists of two steps. The first is the expectation step in the EM 
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algorithm, where the statistical parameters of the GMM components are estimated 

from the given class specific feature vectors. In the second step, the new parameters 

are then combined with the background model parameters using data dependent 

mixing coefficient. The adaptation process can be explained as follows. Given that a 

training vector for a specific class is 푋 = {푥 , 푥 , … .푥 } and parameters of 

background model {흎 ,흁 ,∑ } , we determined the probability of the training 

feature vectors to the background model GMM components. The probability of 

mixture-i in the background model is computed as:  

푃푟(푖|푥 ) =
휔 푝 (풙 )

∑ 휔 푝 (풙 ) 																																																									(5.3) 

Then, by using a given feature vectors, the mixture parameters for weight, mean and 

variance can be estimated by using 푃푟(푖|풙 ) as follows: 

푛 = 푃푟(푖|푥 )																																																														(5.4) 

퐸 (풙) =
1
푛 푃푟(푖|푥 )풙 																																																				(5.5) 

퐸 (풙 ) =
1
푛 푃푟(푖|푥 )풙 																																																(5.6) 

The new parameter estimated from the training feature vector is then used to update 

the parameters in the background model. The adaption of class specific model 

parameter using background model parameters for mixture i is given as: 

휔 = [훼 푛 /푇		 + (1− 훼 )휔 ]Ϛ 																																							(5.7) 

휇̂ = 훼 퐸 (푥) + (1 − 훼 )휇 																																																(5.8) 

휎 = 훼 퐸 (푥 ) + 	(1 − 훼 )(휎 + 휇 ) − 휇̂ 																						(5.9) 
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The scale Ϛ is computed for all parameter of weight in order to make sure the weight 

sum to unity. The new parameter {휔 , 휇̂ , 	휎 } to represent the class specific model 

is adapted by using the old parameter {휔 ,휇 ,휎 } which is first computed from the 

background model.  

       The adaptation method based on a background model has been successfully 

applied in speaker and face recognition [78, 115]. In speaker recognition, the single 

background model has been trained using pooled of speaker users in the database 

and the class specific speaker model is computed by using the adaptation method 

shown in Eq. (5.7)-(5.9). Meanwhile, the adaptation process applied in face 

verification in [78] only use parameter mean to update the class specific parameter 

model, while the other parameters are taken from the background model. The 

classification process in the framework of GMM classifier for both speaker and face 

modalities are computed using a difference of likelihood scores between class 

specific model and background model. However, to date, no investigation has been 

reported into the use of universal background model to compute likelihood score 

normalization in multimodal biometrics where information is fused at the feature 

level specifically in face and palmprint multimodal biometrics. Thus the aim of this 

chapter is to explore the potential usefulness of likelihood score normalization 

computed using universal background model to increase the accuracy of the 

verification process. The proposed framework for likelihood score normalization 

computed using universal background model is shown in Figure 5.3.  
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 푙(푋 ) = log 푝(푋 | ) − log(푋 | ) 

Figure 5.3: Normalised likelihood score in the universal background model 
framework. 

 

This method is able to suppress or reduce the likelihood score of an imposter trying 

to claim true user identity. This is because the total likelihood score computed from 

the universal background model is high, due to the existing of imposter statistical 

information in the universal background model. Meanwhile, the likelihood score 

computed from a claim user model is low due to different statistical information 

exist in a claim user model. Thus, this situation will produce a low total likelihood 

score as shown in Eq. (5.2). Using a decision rule in Eq. (5.1), the likelihood scores 

given by an imposter will be rejected when they are less than a threshold value. On 

the other hand, when a genuine user trying to claim a true identity, the likelihood 

score given by a claim user model is high due to the same statistical information 

exists in both of them. Meanwhile, likelihood score computed from universal 

background model also high due to the existing of claim user information in the 

universal background model. However, the likelihood score computed from user 

model is higher than those computed from the background model, and thus the total 
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likelihood score will be relatively higher than the threshold value. Thus, the system 

will accept a claimed user as a genuine user by using a decision rule in Eq. (5.2). 

The next section investigates a different approach to implement likelihood score 

normalization using cohort of user in the background model.  

 

5.4 Cohort Background Model  

     This technique works by selecting a cohort of users in background model using 

likelihood score that are close to that of the likelihood score of claim user model. 

The selection of cohort user that has a similarity of likelihood score with the claim 

user was conducted during the testing process. The degree of similarity between the 

claimed user model and the cohort of user in background model is measured using 

the likelihood score computed from the test feature vectors. An average likelihood 

score for the cohort background model is computed using the selected number of 

background model shown as follows:  

푝(푥) ≈ 푝(푥|휆 )
/

																																													(5.10) 

where 푝(푥|휆 ), 푘 = 1,2, … . ,퐾 is the probability density function with the highest K 

likelihood scores computed using test feature vector from a set of M (M > K) 

background models. Thus, the highest likelihood scores of K background models are 

called competing models and their statistical properties are nearly similar to those of 

the claimed user model. 

     The average likelihood score in Eq. (5.10) can be expressed in the log domain in 

order to simplify the calculation. The likelihood score of background models for 
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cohort background model to represent 푝(푋|휆 ) in Eq. (5.2) can be expressed as 

follows 

푝 (푋|휆 ,퐾) =
1
퐾 log푝 푋|휆( ) 																														(5.11) 

where X(푖) ≠ 푋(푗) if 푖	 ≠ 푗 and 휆 ,휆 , … , 휆  are the cohort of user in the 

background model belongs to the highest K likelihood score after the likelihood 

score given by the claim user model. The average likelihood score of K potential 

competing background models are selected from their closeness or similarity with 

claimed user model by using a given test feature vectors as shown in Eq. (5.11). The 

advantage of using cohort background model to normalize the likelihood score of 

the claimed user in multimodal biometric verification is the possibility that it can 

assist in distinguishing between the scores of genuine users and imposters. This is 

due to the suppression of total likelihood score when there is an impostor that is 

trying to claim a true identity. The reason for this is that, for a given type of 

biometrics and an adequately large set of background models, an impostor targeting 

a particular client model is more likely going to match one or a few background 

models. As a result, likelihood score normalization using the cohort background 

model method is able to suppress the total likelihood score when the claimed user is 

an imposter instead of a genuine user.  

      The verification process in the cohort background model framework is depicted 

in Figure 5.4. For a given test feature vector, the probability of likelihood score of 

the claimed user is computed using GMM model parameters that are belong to the 

claimed user model. Then, the likelihood score of the claimed user model is 

normalized using the average likelihood score computed from a set of K competitive 

background models. Compared to the universal background model discussed in the 
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previous section, this approach does not need to utilize parameter adaptation from 

the background models. The model parameters for each class are estimated 

independently without inference from background model parameters, thus it 

requires large amount of training feature vectors in order to accurately estimate 

model parameters. In real applications, biometrics systems always have a problem 

with small numbers of training images, and thus this method will suffer to 

accurately estimate the model parameters for each class. The drawbacks of using 

cohort background model with a small number of training images are discussed in 

the experimental analysis at the end of this chapter.  

 

 

 

 

 

														푙(푋 ) = log 푝(푋 | ) −
1
N

log 	푝 푋 |  

Figure 5.4: Likelihood scores normalization using cohort background model. 

 

5.5 Experiment Analysis 

      The performance of the verification system to evaluate the advantage of using 

likelihood score normalization computed from the background model are measured 

in terms of EER and the curve of receiver operating characteristic (ROC). The ROC 

curve is a two dimensional plot showing the percentage of false acceptance rate 
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(FAR) against false rejection rate (FRR). Meanwhile, the EER is the percentage of 

errors when FAR is equal to FRR. Thus, a good verification system will try to 

minimize the value of EER. However, in practice there are several difficulties in 

reducing EER in real biometrics applications, such as the effect of variations in train 

and test data and the limitation of classification algorithms to capture the important 

features. This section evaluates the effectiveness of using a background model to 

calculate the likelihood score normalization in the classification process to reduce 

the EER values. A series of experimental studies has been conducted using two sets 

of virtual multimodal datasets. The ORL-PolyU multimodal dataset consisting of 

virtual combinations of ORL face images and PolyU palmprint images; and the 

FERET-PolyU multimodal datasets consisting of virtual combinations of FERET 

face and PolyU palmprint dataset.  These are two benchmark face datasets that are 

commonly used to evaluate face recognition systems. Meanwhile, the PolyU 

palmprint dataset [104] is a benchmark dataset that is used in the analysis of 

palmprint recognition systems.  

       The virtual multimodal dataset constructed using ORL face and PolyU 

palmprint dataset consists of 800 images of face and palmprint modalities. These 

images belong to 40 subjects with 10 images for each subject. In order to construct 

multimodal dataset, a computer program is used to randomly choose 2 images for 

training and 8 images for testing from the face and palmprint datasets. Then, these 

images are paired together to form multimodal datasets. ORL face images consist of 

frontal face images with several variations in pose, expression and hairstyle. All 

images are resized to 100 x 90 pixels and the important features are extracted using 

the technique discussed in Chapter 3. Palmprint images contain middle image of 

palm area extracted using the ROI method proposed in [104] and the important 
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information in the middle palm texture is extracted using the feature extraction 

method proposed in Chapter 3. Palmprint images have several variations such as 

noise, ageing, and different orientations. On the other hand, the virtual multimodal 

FERET-PolyU dataset is constructed from the FERET face and PolyU palmprint 

dataset consists of 2400 images from 200 subjects. For each subject, 2 images are 

used for training and another 4 images are used for testing. Face images in FERET 

dataset have several variations in terms of pose, expression, ageing, hairstyle and 

illumination.  

 

5.5.1 Performance Analysis of the Universal Background Model 

       In this analysis, the effect of using the universal background model to compute 

the likelihood score normalization to the verification performance is investigated. 

The experimental work is tested using ORL-PolyU multimodal dataset and FERET-

PolyU multimodal dataset. The GMM parameters used to represent universal 

background model are estimated using the training fused feature vectors for all 

subjects. Meanwhile, the estimation of GMM parameters to represent each class 

model is adapted from the universal background model parameters. In this section a 

series of analyses are performed to investigate the effect of parameter adaptation in 

GMM components, the effect of using different numbers of training images and the 

effect of using different numbers of GMM components to estimate the mixture 

models. 

          In the first analysis, the effect of using GMM parameter adaptation to estimate 

the model parameters for each class is investigated. The three parameters in the 

GMM component are adapted from the background model parameters are weight, 

mean and covariance matrix. The model parameters for each class are estimated 
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using adaptation framework which used GMM parameters in the universal 

background model to compute new model parameters. Parameter adaptation can be 

computed in two separate groups of model parameters. First, only the mean 

parameter is adapted while the remaining parameters are taken from universal 

background models, and second, all parameters are adapted using universal 

background model parameters. This analysis examines two of these adaptation 

approaches that are able to achieve the highest verification performance. Parameter 

adaptation in the GMM is an iterative process based on the expectation and 

maximization steps in the EM algorithm and requires initial parameters in the first 

step of iterations. In this case, initial parameters are taken from the background 

model parameters. Figure 5.5 shows verification performance in terms of GAR 

versus FAR for the different approaches of parameter adaptation. The verification 

performance of parameter adaptation using means does not give a significant 

difference compared to the parameter adaptation using mean, weight and 

covariance. However, the highest verification performance of 97% GAR at 0.01% 

FAR was achieved using the fusion method utilizing mean parameter adaptation. In 

this approach, only mean parameters are adapted, while the other parameters are 

taken from the universal background model parameters. Compared to a baseline 

method which does not use likelihood score normalization, the verification 

performance is lower than the propose method. Thus, this shows that likelihood 

normalization computed from background models in the feature level fusion of 

multimodal biometrics is able to improve the verification process. The proposed 

method is also compared with single modal biometrics based on face and palmprint 

modalities, and the results show that the fusion method achieved superior results. 

Figure 5.6 shows the same analysis tested using the ORL-PolyU multimodal 
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datasets. The results show that the adaptation of mean parameters gives the highest 

GAR of 94.5% at 0.01% FAR. Meanwhile, the baseline method which does not use 

likelihood normalization achieved the lowest verification rates.  

 

Figure 5.5: ROC curve shows the verification rates (%) when the model parameters 
are adapted using weight, mean and covariance from the universal background 
model. The analysis is tested using FERET-PolyU multimodal datasets.  
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Figure 5.6: ROC curve shows the verification rates (%) when the model parameters 
are adapted using weight, mean and covariance from the universal background 
model. The analysis is tested using ORL-PolyU multimodal datasets. 
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score normalization achieved higher rates of EER for all numbers of GMM 

components. From this analysis, likelihood score normalization using the universal 

background model is able to reduce the imposter likelihood scores if there are 

enough GMM components. The best verification rate in single modal biometrics is 

0.9% EER achieved by using 7 GMM components; however the EER values are still 

higher than those for the proposed method. A conventional concatenation method 

achieved 0.7% EER when parameter estimation was performed using 8 GMM 

components.  The proposed method requires 10 GMM components to obtain the 

best result due to the richness information exists in the fused feature vector. Thus, 

extra GMM components are required to capture the underlying statistical 

information in the fused feature vector. Figure 5.8 shows the verification analysis in 

terms of EER with different numbers of GMM components when tested using the 

ORL-PolyU multimodal dataset. The lowest EER of 1.5% is achieved using 5 GMM 

components. The experimental work using this dataset only required 5 GMM 

components to achieve the best results because the ORL-PolyU dataset is smaller 

than the FERET-PolyU dataset, for which 10 components were required in order to 

achieve the best results. Both of these analyses show that likelihood score 

normalization using the universal background model is able to achieve lower values 

of EER in both small and large multimodal datasets if sufficient GMM components 

are used to capture the underlying statistical properties in the fused feature vectors.  
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Figure 5.7: Analysis of the effect of the use of universal background model on 
values of EER (%) for different numbers of GMM mixture components when tested 
using the FERET-PolyU multimodal dataset. 
 
 

 
 

Figure 5.8: Analysis the effect of universal background model in terms of EER (%) 
for a different number of GMM mixture components when tested using ORL-PolyU 
multimodal dataset. 
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      The effect on verification performance when the estimation process is performed 

using different numbers of training images is investigated next. Reducing the 

number of training images for each subject will decrease the variations in images 

used to train the background model and user model parameters. These variations 

contain important information which is important in distinguishing between 

different persons. Theoretically, parameter estimation using less information should 

affect the accuracy of the model constructed due to the smaller amount of 

information available during the training process. However, the estimation of the 

parameter of user models are affected to a lesser extent due to the parameter 

adaptation approach utilized in the universal background model. The performance of 

verification system would be affected by reducing number of training images. The 

effect on EER values of varying numbers of training images from 1 to 5 on 

verification rates is investigated. The results in Figure 5.9 show that the proposed 

method achieved a constant rate of EER of 0.6% when training was performed using 

different numbers of training images. Moreover, the highest performance was 

achieved when the estimation was conducted using at least 2 training images for 

each subject. However, a baseline method using linear projection and a Euclidean 

distance classifier achieved the lowest EER of 1.1 % when using 5 training images 

for each subject. The proposed method was also compared with a conventional 

concatenation method where the concatenated feature vectors are modelled using 

GMM and a classification process is performed using normalized likelihood score. 

The best verification rate achieved by conventional concatenation method was 

0.75% EER which can only be achieved when more than 4 training images are used. 

Figure 5.10 shows the values of EER when the training process is performed using 

different numbers of training images with the ORL-PolyU multimodal dataset. The 
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results are identical to the analysis using the FERET-PolyU dataset, where the 

proposed method is able to achieve the lowest EER of 1.5% using 2 training images 

for each subject. The results from both datasets shows that likelihood score 

normalization using the universal background model consistently achieves the 

lowest EER when model parameters are estimated using fewer training images. This 

is due to the adaptation method applied during the estimation process where the 

background model parameters estimated from a large number of users are not 

affected by the small number of training images. In the adaptation process the 

estimation of model parameters for each user model is initiated from a stable 

background model parameter. Therefore by a given fused feature vectors from a 

specific class of user, a probability density function for user model will try to fit to 

an appropriate shape using statistical information exist in the fused feature vector.  

 
 

Figure 5.9: Analysis the effect of universal background model in terms of EER (%) 
for a different number of training images tested using FERET-PolyU multimodal 
dataset. 
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Figure 5.10: Analysis the effect of universal background model in terms of EER (%) 
for a different number of training images when tested using ORL-PolyU dataset. 
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available for the training process. This experimental work analyses the effectiveness 

of background models using cohort background model. 

       The first analysis investigates the effect on verification performance of different 

cohort sizes in the cohort background model. There are several numbers of cohort 

users used to compute the average likelihood score of background model in order to 

increase the effectiveness of the system to suppress the imposter likelihood score. In 

practice, an imposter trying to claim a user’s identity supposed to present in the 

background model, thus by using several number of cohort users might be able to 

compute imposter likelihood scores. This can be achieved using several number of 

the highest likelihood score computed from the background model to compute the 

average likelihood scores. This analysis determines the cohort size able to achieve 

the lowest rate of EER. The effectiveness of the proposed method is compared 

against that of single modal biometrics, the baseline method without likelihood 

scores normalization and the conventional fusion method using concatenation. The 

results in Figure 5.11 show that the proposed method needs a cohort size of 10 to 

achieve the lowest EER which is 0.6% when tested using the FERET-PolyU 

multimodal dataset. Increasing cohort size then has no further significant effect on 

the value of EER. Meanwhile, reducing cohort size to less than 10 will increase 

value of EER. The baseline method that uses likelihood score without likelihood 

scores normalization in the background model produces higher EERs compared to 

the proposed method. The conventional concatenation method requires a cohort 

sizes of 8 to achieve 0.8% EER, which is 0.2% higher than the proposed method. 

Figure 5.12 show the analysis of EER using different sizes of cohorts tested using 

the ORL-PolyU multimodal datasets. Likelihood score normalization using the 

cohort background model requires 7 cohorts to achieve the lowest EER of 1.5%. 
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Meanwhile, the baseline method that does not use likelihood normalization achieved 

the highest rates of EER compared to the other methods. This suggests that 

likelihood normalization using the cohort background model is able to increase the 

performance of verification in multimodal biometrics systems that use fused feature 

vectors.  

 

Figure 5.11: Analysis of the effect of cohort background model on EER (%) for a 
different number of cohort sizes tested using FERET-PolyU multimodal datasets. 
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Figure 5.12: Analysis of the effect of cohort background model on EER (%) for a 
different number of cohort sizes tested using ORL-PolyU multimodal datasets. 
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available to model the distribution of the fused feature vectors. This experimental 

work investigated the best number of GMM mixture components needed to estimate 

the model parameters which is able to achieve the lowest rates of EER. The number 

of GMM mixture components is varied from 1 to 18 components and the 

performance in terms of EER of each number is measured. The proposed method is 

compared with the baseline method, conventional concatenation and a single modal 

biometrics system. The result in Figure 5.13 shows that the proposed method 

achieved 0.6% EER when the estimation of model parameters was performed using 

10 GMM mixture components. Increasing the number of GMM mixture components 

had no significant effect on EER, and thus 10 GMM components is the best number 

in accurately estimating the model parameters. The lowest EER for the conventional 

concatenation method was 0.75%, which was achieved using 10 GMM mixture 

components. However, the baseline method without likelihood normalization 

achieved the lowest EER of 1.6% using 8 GMM mixture components. The lowest 

rate of EER for single modal biometrics using face images was 1.3% when the 

model parameters were estimated using 10 GMM components. Meanwhile, single 

modal biometrics using palmprint images achieved 1% EER when the model 

parameters were estimated using 10 GMM mixture components. Single modal 

biometrics using face and palmprint images required fewer GMM mixture 

components compared to the proposed method because less statistical information 

exists in the feature vector. Larger numbers of GMM mixture components are 

required to accurately estimate the probability density function of the fused feature 

vectors due to the richness of statistical information which results from the fusion 

process. The effect of using different numbers of GMM components was also tested 

using the ORL-PolyU multimodal dataset and the results are shown in Figure 5.14. 
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In this analysis, 6 GMM mixture components were required to accurately estimate 

the model parameters in order to achieve 1.5% EER.  

 

Figure 5.13: Analysis of the effect of cohort background model in terms of EER(%) 
for a different numbers of GMM mixture components tested using FERET-PolyU 
multimodal dataset. 
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Figure 5.14: Analysis of the effect of cohort background model in terms of EER (%) 
for a different numbers of GMM mixture components tested using ORL-PolyU 
multimodal dataset. 
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using PCA and a Euclidean distance classifier, conventional concatenation, and 

single modal biometrics. The results in Figure 5.15 show that the proposed method 

achieved the lowest EER of 0.6% when training was conducted using 5 training 

images for each subject. The rates of EER from other methods were higher 

irrespective of numbers of training images used. When number of the training 

images is reduced to less than 5 for each subject, the resulting EER, dramatically 

increase for all methods. This suggests, that performance for all methods depends on 

the number of training images used. However, the method using the universal 

background model discussed in the previous section exhibits robust performance in 

terms of numbers of training images. However, the matrix interleaved fusion 

method still gives a better result compared to the baseline method and a 

conventional concatenation with a smaller number of training images. The effect on 

EER of different numbers of training images using the ORL-PolyU multimodal 

dataset was also tested. Figure 5.16 show that the lowest EER was achieved using 5 

training images for each subject. This result is identical to that of the analysis using 

the FERET-PolyU multimodal dataset shown in Figure 5.15. The rates of EER are 

significantly increased when fewer training images for each subject are used. 

Therefore, we can conclude that the performance of verification systems using 

cohort background model depends on the number of training images. 
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Figure 5.15: Analysis of the effect of cohort background model on EER (%) for 
different numbers of training images tested using FERET-PolyU dataset. 

 

Figure 5.16: Analysis of the effect of cohort background model on EER (%) for 
different numbers of training images tested using ORL-PolyU dataset. 
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5.5.3 Comparison between Universal and Cohort Background 

Model 

    The previous section has analysed and discussed the advantages of likelihood 

normalization computed from a background model using the two different 

approaches of the universal background model and the cohort background model. 

An extensive experimental analysis has demonstrated that both are able to increase 

verification rates in multimodal biometrics systems which fuse information at 

feature level. In other words, both background model methods are able to suppress 

imposter scores by using the underlying statistical properties which result from the 

richness of information in the fused feature vectors. However, both of these 

approaches use different techniques for model parameter estimation. Thus, in this 

analysis, these background models are compared in order to find the best types of 

likelihood score normalization to implement in multimodal biometrics systems. A 

series of experimental studies are conducted using the ORL-PolyU and FERET-

PolyU multimodal datasets. 

      The first analysis evaluates the verification performance for both background 

models using ROC curves, which plot the rate of FAR versus GAR. To validate the 

effectiveness of the background models against existing methods, a comparison is 

made using a baseline method that does not involve likelihood score normalization. 

Figure 5.17 shows the verification rates of the universal background model, cohort 

background model and the baseline method when using the FERET-PolyU 

multimodal dataset. The result show that both background models achieved 23% 

better verification rates at 0.01% FAR than the baseline method. However, the 

verification rates for the universal background model and cohort background model 

are approximately equivalent to each other with the highest rates of GAR of 97% at 
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0.01% FAR. Figure 5.18 shows the same analysis tested using the ORL-PolyU 

multimodal dataset. The results are identical to those of the previous analysis using 

the FERET-PolyU multimodal dataset, with no significant different found in 

verification rates between the universal background model and the cohort 

background model.  

 

Figure 5.17: Comparison of the verification rate of the universal background model, 
cohort background model and baseline method in terms of GAR (%) and FAR(%) 
tested by using FERET-PolyU dataset. 
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Figure 5.18: Comparison of the verification rates of the universal background 
model, cohort background model and baseline methods in terms of GAR (%) and 
FAR(%) tested using ORL-PolyU dataset. 
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limited number of training images. Figure 5.19 shows the verification rates in terms 

of EER when tested using the FERET-PolyU multimodal dataset with the numbers 

of training images varied from 1 to 5 images for each subject. The EER of the 

universal background model is 0.4% lower than the cohort background model when 

parameter estimation is conducted using 2 training images. However, when using 5 

training images for each subject, the performance of cohort background model is 

equivalent to that of the universal background model of 0.6% EER. From this 

analysis, it is concluded that parameter estimation in the universal background 

model is more robust than the cohort background model with smaller number of 

training images. Figure 5.20 shows the same analysis tested using ORL-PolyU 

multimodal datasets. The results are identical to those of the previous analysis where 

the universal background model achieves the lowest EER of 1.5% using 3 training 

images for each subject. The universal background model provides better 

verification rates with a small number of training images due to its inclusion of all 

users in the training of a single background model and then applying adaptation to 

estimate the model parameters for each user. However in the cohort background 

model approach, the background model is developed from a specific class user 

model where the parameters are directly estimated from the training images for each 

subject. Thus, less statistical information is used to estimate modal parameters with 

a smaller number of training images. 
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Figure 5.19: Comparison of cohort background model and universal background 
model in terms of EER (%) with different numbers of training images tested using 
FERET-PolyU multimodal dataset. 
 

 

Figure 5.20: Comparison of cohort background model and universal background 
model in terms of EER (%) with different numbers of training image tested using 
ORL-PolyU multimodal dataset. 
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5.6 Summary 

        A method to increase the verification performance of multimodal biometrics 

systems that use feature fusion is presented. The framework is developed using 

likelihood score normalization computed from two types of background models, the 

universal background model and the cohort background model. Likelihood score 

normalization approaches show improvement in verification rates due to the ability 

of the system to suppress the imposter likelihood score. Likelihood score 

normalization also reduces the effect of variations in the test feature vectors. A 

series of experimental analyses using the ORL-PolyU and FERET-PolyU 

multimodal dataset has been conducted to further validate the proposed method. 

Likelihood score normalization computed from the universal background model is 

robust compared to the cohort background model with a smaller number of training 

images. However, with a large number of training images, both background models 

give superior results compared to the baseline method that does not use likelihood 

normalization.  
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Chapter 6 

 

 
Conclusion and Future Work 

 

      This chapter summarise the proposed framework for multimodal biometric 

fusion at the feature level for face and palmprint modalities. The contributions made 

in each chapter are first briefly discussed and summarized. However, there still have 

several questions to be addressed in future work, and recommendations are made 

concerning potential research directions towards achieving more efficient feature 

fusion techniques in multimodal biometrics. Overall the work in this thesis has 

fulfilled the aim and objectives mentioned in Chapter 1. 

 

6.1 Summary and Contribution 

      Multimodal biometrics is able to achieve better performance than single modal 

biometrics by consolidating multiple traits in the recognition process. As discussed 

in Chapter 1, several of the limitations of single modal biometrics can be solved by 

using multimodal biometrics due to the presence of extra modalities in the 

recognition system. All of the objectives and aims set out in Chapter 1 have been 

fulfilled in this thesis. In Chapter 2 the general concepts of multimodal biometric 
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fusion were explained. Information fusion can be carried out at several levels, such 

as feature level, matching score level, and decision level. The richest information is 

given by feature level fusion because here integration is performed at an early stage 

of information fusion. As a result, the thesis investigates a novel method of feature 

level fusion based on matrix interleaved framework combining face and palmprint 

features. The feature level fusion produces new feature vectors which contain richer 

statistical information, and thus an appropriate statistical model is required to 

capture and estimate model parameters. Thus, a brief discussion was given of the 

density estimation method based on a parametric model. Model parameter 

estimation and adaptation is then discussed based on the GMM framework. 

       In Chapter 3, the feature extraction method for face and palmprint images based 

on global and local features is discussed. A novel compact local representation of 

face and palmprint images is proposed where important information in the image is 

extracted using multiresolution analysis and compact energy representation 

computed using the DCT transform. The new local features extracted in sub block 

windows produce independent local feature vectors suitable for the estimation of 

GMM parameters. It was found that the highest performance of the recognition 

system was achieved when using only 23% (15 of 64) of DCT coefficients. 

Moreover, the proposed method does not need to apply pixel overlap to the sub 

block windows, which has previously been required when local features based on 

the DCT transform are extracted in sub block windows. The compact feature 

representation of low frequency components in the DCT transform image only 

appear in a small number of DCT coefficients. By removing high frequency 

component in DCT coefficients, the proposed feature extraction method can solve 

the problem of high dimensionality when two feature vectors are concatenated. The 
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experimental results tested using FERET-PolyU dataset achieved the highest 

recognition rates of 97% respectively. Meanwhile, the verification analysis shows 

that the FERET-PolyU analysis achieved an EER of 0.6%. 

       In Chapter 4 a novel method of feature fusion based on matrix interleaved is 

proposed to integrate the feature vectors given by face and palmprint images. The 

proposed method is able to increase the statistical information used compared to 

conventional concatenation methods when two feature vectors are concatenated and 

then interleaved. The increased statistical information in the fused feature vector 

increases the discrimination power of the fused feature vector. Thus, more powerful 

discrimination can be achieved by this fusion process compared to single modal 

biometrics and conventional concatenation methods. The method also has 

advantages during the estimation of the model parameters, due to the existence large 

number of data points in the training set, which gives more accurate parameter 

estimation. Even though, matrix interleaved fusion increases the number of data 

points in the feature space, the information stored in the database for use in the 

recognition process only consists of the model parameters which includes weight, 

mean and covariance matrices. The experiment analysis using the FERET-PolyU 

and ORL-PolyU datasets shows that the proposed matrix interleaved method 

achieved 97% and 99.7% recognition accuracy, which is higher than the best 

achieved by conventional concatenation method. A comparison with the use of 

single modals shows that the proposed method achieved 10% improvement 

compared to unimodal face and palmprint biometrics respectively.  

      In chapter 5 the implementation of likelihood score normalization using 

background model is proposed for the calculation of final likelihood scores in order 

to increase the performance of the verification process. Likelihood score 
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normalization is constructed by using two different approaches of background 

model based on unconstraint cohort normalization and universal background model. 

The advantage of using likelihood normalization in the verification process arises 

from the ability of the system to suppress the imposter likelihood score with the 

assumption that the imposter must exist in the large population of the users. 

Likelihood normalization can also reduce the effect of data variations in the test 

feature vector. It was found that, with a small number of training images, likelihood 

normalization based on the universal background model gives better verification 

results compared to those from CBM due to the existing large number of users to 

estimate parameters of the background model. Moreover, universal background 

model use parameter adaptation approach where a new model parameter for a 

specific class user is adapted from the background model parameters. Parameter 

estimation of the GMM required many feature vectors to accurately estimate the 

model parameter, thus in a small number of training images, UBM which depend on 

feature vectors from a specific class to estimate the model parameter will not have 

enough information to accurately estimate the model parameter. However, in a large 

number of training images, both of background model achieve superior result due to 

the enough information to estimate the model parameters. Finally, from the 

experimental analysis in this chapter it was found that likelihood score 

normalization is able to achieve better results compared to verification process 

without implementing likelihood score normalization in both small and large size of 

multimodal datasets.  

         To conclude, this thesis has presented and explained a novel method of 

multimodal biometric fusion, which cover a new method of feature extraction, a 

new framework of feature fusion and implementation of likelihood score 
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normalization using background model. The proposed method is able to increase the 

performance of recognition and verification of biometrics system compared to that 

of single modal biometrics and conventional concatenation methods. The thesis has 

accomplished and fulfilling the aims and objective of information fusion of face and 

palmprint modalities by integrating information at feature level using a new type of 

compact local feature representation. Using statistical learning method such as 

GMM is able to capture the underlying statistical properties which exist in the fused 

feature vector, thus permitting the use of maximum likelihood to measure a degree 

of certainty that can be used in the classification process. The performance of the 

verification process is further enhanced by introducing the likelihood score 

normalization method which can suppress the likelihood score given by an imposter 

trying to access the system. The proposed method achieved the best recognition 

rates of 99.7% and 97% when tested on ORL-PolyU and FERET-PolyU datasets. 

On the other hand, verification analysis shows that the proposed method achieved 

1.5% EER when tested on ORL-PolyU datasets. The ROC curve shows that the 

system achieved 96% GAR at 0.1% FAR when tested on ORL-PolyU datasets. The 

best EER for FERET-PolyU datasets was 0.6% EER, while the ROC curve shows 

that the highest GAR of 99% can be obtained at FAR 0.1%.  
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6.2 Future Work 

     Based on the work presented in this thesis, there are several possible 

investigations on the future work that can be initiated. Feature level fusion in 

multimodal biometric can be extended by several ideas in terms of feature extraction 

and combination. 

      This thesis computed the local features in all regions of face and palmprint 

images for the fusion process. However, some of the region may consist low 

frequency information thus will have high discrimination power, while the others 

may contain high frequency information thus not effective for discrimination. 

Additionally it has been shown that the feature extraction method based on local 

features extracted from sub block window can be fused to form a new fused feature 

vector.  In the future work, we can pre-process the information from each region to 

select the region that has high discrimination power and eliminate the region with 

redundant features. This mechanism perhaps will increase the information in the 

fused feature vector when the less informative region is removed from the feature 

vector. Moreover, some regions may also contain intra-class similarity, and 

removing them could therefore reduce this effect.  

        The proposed feature extraction and fusion method is designed to deal with 

grayscale images. The input image is converted to grayscale and then the important 

information is extracted from the image. This framework could be further extended 

in the future to deal with colour images that might contain extra information. Fusing 

information extracted from the red, green and blue components of an image might 

produce a better fused feature vectors which contains richer information than that in 

grayscale images.  
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      Another future study could extend this work to other biometric traits such as 

those of irises, fingerprints and gait. The feature fusion framework discussed in 

chapter 4 can be generalized so as to be employed with different biometric traits. 

Some of the biometrics images require similar processing and feature extraction 

technique as discussed in this thesis. However, other biometric traits such as 

fingerprint and gait require a different method to transform the features to a 

compatible form for fusion process such as by generating a statistical map of the 

extracted feature points distribution in the biometric image. The new feature vectors 

generated from these types of transformation could then be used in the fusion 

process.  
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