55,502 research outputs found

    Multi-Input Multi-Output Target-Speaker Voice Activity Detection For Unified, Flexible, and Robust Audio-Visual Speaker Diarization

    Full text link
    Audio-visual learning has demonstrated promising results in many classical speech tasks (e.g., speech separation, automatic speech recognition, wake-word spotting). We believe that introducing visual modality will also benefit speaker diarization. To date, Target-Speaker Voice Activity Detection (TS-VAD) plays an important role in highly accurate speaker diarization. However, previous TS-VAD models take audio features and utilize the speaker's acoustic footprint to distinguish his or her personal speech activities, which is easily affected by overlapped speech in multi-speaker scenarios. Although visual information naturally tolerates overlapped speech, it suffers from spatial occlusion, low resolution, etc. The potential modality-missing problem blocks TS-VAD towards an audio-visual approach. This paper proposes a novel Multi-Input Multi-Output Target-Speaker Voice Activity Detection (MIMO-TSVAD) framework for speaker diarization. The proposed method can take audio-visual input and leverage the speaker's acoustic footprint or lip track to flexibly conduct audio-based, video-based, and audio-visual speaker diarization in a unified sequence-to-sequence framework. Experimental results show that the MIMO-TSVAD framework demonstrates state-of-the-art performance on the VoxConverse, DIHARD-III, and MISP 2022 datasets under corresponding evaluation metrics, obtaining the Diarization Error Rates (DERs) of 4.18%, 10.10%, and 8.15%, respectively. In addition, it can perform robustly in heavy lip-missing scenarios.Comment: Under review of IEEE/ACM Transactions on Audio, Speech, and Language Processin

    Seeing voices and hearing voices: learning discriminative embeddings using cross-modal self-supervision

    Full text link
    The goal of this work is to train discriminative cross-modal embeddings without access to manually annotated data. Recent advances in self-supervised learning have shown that effective representations can be learnt from natural cross-modal synchrony. We build on earlier work to train embeddings that are more discriminative for uni-modal downstream tasks. To this end, we propose a novel training strategy that not only optimises metrics across modalities, but also enforces intra-class feature separation within each of the modalities. The effectiveness of the method is demonstrated on two downstream tasks: lip reading using the features trained on audio-visual synchronisation, and speaker recognition using the features trained for cross-modal biometric matching. The proposed method outperforms state-of-the-art self-supervised baselines by a signficant margin.Comment: Under submission as a conference pape

    FaceFilter: Audio-visual speech separation using still images

    Full text link
    The objective of this paper is to separate a target speaker's speech from a mixture of two speakers using a deep audio-visual speech separation network. Unlike previous works that used lip movement on video clips or pre-enrolled speaker information as an auxiliary conditional feature, we use a single face image of the target speaker. In this task, the conditional feature is obtained from facial appearance in cross-modal biometric task, where audio and visual identity representations are shared in latent space. Learnt identities from facial images enforce the network to isolate matched speakers and extract the voices from mixed speech. It solves the permutation problem caused by swapped channel outputs, frequently occurred in speech separation tasks. The proposed method is far more practical than video-based speech separation since user profile images are readily available on many platforms. Also, unlike speaker-aware separation methods, it is applicable on separation with unseen speakers who have never been enrolled before. We show strong qualitative and quantitative results on challenging real-world examples.Comment: Under submission as a conference paper. Video examples: https://youtu.be/ku9xoLh62

    End-to-end Audiovisual Speech Activity Detection with Bimodal Recurrent Neural Models

    Full text link
    Speech activity detection (SAD) plays an important role in current speech processing systems, including automatic speech recognition (ASR). SAD is particularly difficult in environments with acoustic noise. A practical solution is to incorporate visual information, increasing the robustness of the SAD approach. An audiovisual system has the advantage of being robust to different speech modes (e.g., whisper speech) or background noise. Recent advances in audiovisual speech processing using deep learning have opened opportunities to capture in a principled way the temporal relationships between acoustic and visual features. This study explores this idea proposing a \emph{bimodal recurrent neural network} (BRNN) framework for SAD. The approach models the temporal dynamic of the sequential audiovisual data, improving the accuracy and robustness of the proposed SAD system. Instead of estimating hand-crafted features, the study investigates an end-to-end training approach, where acoustic and visual features are directly learned from the raw data during training. The experimental evaluation considers a large audiovisual corpus with over 60.8 hours of recordings, collected from 105 speakers. The results demonstrate that the proposed framework leads to absolute improvements up to 1.2% under practical scenarios over a VAD baseline using only audio implemented with deep neural network (DNN). The proposed approach achieves 92.7% F1-score when it is evaluated using the sensors from a portable tablet under noisy acoustic environment, which is only 1.0% lower than the performance obtained under ideal conditions (e.g., clean speech obtained with a high definition camera and a close-talking microphone).Comment: Submitted to Speech Communicatio

    Symbolic inductive bias for visually grounded learning of spoken language

    Full text link
    A widespread approach to processing spoken language is to first automatically transcribe it into text. An alternative is to use an end-to-end approach: recent works have proposed to learn semantic embeddings of spoken language from images with spoken captions, without an intermediate transcription step. We propose to use multitask learning to exploit existing transcribed speech within the end-to-end setting. We describe a three-task architecture which combines the objectives of matching spoken captions with corresponding images, speech with text, and text with images. We show that the addition of the speech/text task leads to substantial performance improvements on image retrieval when compared to training the speech/image task in isolation. We conjecture that this is due to a strong inductive bias transcribed speech provides to the model, and offer supporting evidence for this.Comment: ACL 201

    Towards Automatic Speech Identification from Vocal Tract Shape Dynamics in Real-time MRI

    Full text link
    Vocal tract configurations play a vital role in generating distinguishable speech sounds, by modulating the airflow and creating different resonant cavities in speech production. They contain abundant information that can be utilized to better understand the underlying speech production mechanism. As a step towards automatic mapping of vocal tract shape geometry to acoustics, this paper employs effective video action recognition techniques, like Long-term Recurrent Convolutional Networks (LRCN) models, to identify different vowel-consonant-vowel (VCV) sequences from dynamic shaping of the vocal tract. Such a model typically combines a CNN based deep hierarchical visual feature extractor with Recurrent Networks, that ideally makes the network spatio-temporally deep enough to learn the sequential dynamics of a short video clip for video classification tasks. We use a database consisting of 2D real-time MRI of vocal tract shaping during VCV utterances by 17 speakers. The comparative performances of this class of algorithms under various parameter settings and for various classification tasks are discussed. Interestingly, the results show a marked difference in the model performance in the context of speech classification with respect to generic sequence or video classification tasks.Comment: To appear in the INTERSPEECH 2018 Proceeding
    • …
    corecore