97,427 research outputs found

    Report on the BTAS 2016 Video Person Recognition Evaluation

    Full text link
    © 2016 IEEE. This report presents results from the Video Person Recognition Evaluation held in conjunction with the 8th IEEE International Conference on Biometrics: Theory, Applications, and Systems (BTAS). Two experiments required algorithms to recognize people in videos from the Point-and-Shoot Face Recognition Challenge Problem (PaSC). The first consisted of videos from a tripod mounted high quality video camera. The second contained videos acquired from 5 different handheld video cameras. There were 1,401 videos in each experiment of 265 subjects. The subjects, the scenes, and the actions carried out by the people are the same in both experiments. An additional experiment required algorithms to recognize people in videos from the Video Database of Moving Faces and People (VDMFP). There were 958 videos in this experiment of 297 subjects. Four groups from around the world participated in the evaluation. The top verification rate for PaSC from this evaluation is 0.98 at a false accept rate of 0.01 - a remarkable advancement in performance from the competition held at FG 2015

    Template Adaptation for Face Verification and Identification

    Full text link
    Face recognition performance evaluation has traditionally focused on one-to-one verification, popularized by the Labeled Faces in the Wild dataset for imagery and the YouTubeFaces dataset for videos. In contrast, the newly released IJB-A face recognition dataset unifies evaluation of one-to-many face identification with one-to-one face verification over templates, or sets of imagery and videos for a subject. In this paper, we study the problem of template adaptation, a form of transfer learning to the set of media in a template. Extensive performance evaluations on IJB-A show a surprising result, that perhaps the simplest method of template adaptation, combining deep convolutional network features with template specific linear SVMs, outperforms the state-of-the-art by a wide margin. We study the effects of template size, negative set construction and classifier fusion on performance, then compare template adaptation to convolutional networks with metric learning, 2D and 3D alignment. Our unexpected conclusion is that these other methods, when combined with template adaptation, all achieve nearly the same top performance on IJB-A for template-based face verification and identification

    Kinship Verification from Videos using Spatio-Temporal Texture Features and Deep Learning

    Full text link
    Automatic kinship verification using facial images is a relatively new and challenging research problem in computer vision. It consists in automatically predicting whether two persons have a biological kin relation by examining their facial attributes. While most of the existing works extract shallow handcrafted features from still face images, we approach this problem from spatio-temporal point of view and explore the use of both shallow texture features and deep features for characterizing faces. Promising results, especially those of deep features, are obtained on the benchmark UvA-NEMO Smile database. Our extensive experiments also show the superiority of using videos over still images, hence pointing out the important role of facial dynamics in kinship verification. Furthermore, the fusion of the two types of features (i.e. shallow spatio-temporal texture features and deep features) shows significant performance improvements compared to state-of-the-art methods.Comment: 7 page

    Unsupervised Domain Adaptation for Face Recognition in Unlabeled Videos

    Full text link
    Despite rapid advances in face recognition, there remains a clear gap between the performance of still image-based face recognition and video-based face recognition, due to the vast difference in visual quality between the domains and the difficulty of curating diverse large-scale video datasets. This paper addresses both of those challenges, through an image to video feature-level domain adaptation approach, to learn discriminative video frame representations. The framework utilizes large-scale unlabeled video data to reduce the gap between different domains while transferring discriminative knowledge from large-scale labeled still images. Given a face recognition network that is pretrained in the image domain, the adaptation is achieved by (i) distilling knowledge from the network to a video adaptation network through feature matching, (ii) performing feature restoration through synthetic data augmentation and (iii) learning a domain-invariant feature through a domain adversarial discriminator. We further improve performance through a discriminator-guided feature fusion that boosts high-quality frames while eliminating those degraded by video domain-specific factors. Experiments on the YouTube Faces and IJB-A datasets demonstrate that each module contributes to our feature-level domain adaptation framework and substantially improves video face recognition performance to achieve state-of-the-art accuracy. We demonstrate qualitatively that the network learns to suppress diverse artifacts in videos such as pose, illumination or occlusion without being explicitly trained for them.Comment: accepted for publication at International Conference on Computer Vision (ICCV) 201

    Face Identification and Clustering

    Full text link
    In this thesis, we study two problems based on clustering algorithms. In the first problem, we study the role of visual attributes using an agglomerative clustering algorithm to whittle down the search area where the number of classes is high to improve the performance of clustering. We observe that as we add more attributes, the clustering performance increases overall. In the second problem, we study the role of clustering in aggregating templates in a 1:N open set protocol using multi-shot video as a probe. We observe that by increasing the number of clusters, the performance increases with respect to the baseline and reaches a peak, after which increasing the number of clusters causes the performance to degrade. Experiments are conducted using recently introduced unconstrained IARPA Janus IJB-A, CS2, and CS3 face recognition datasets

    Detecting replay attacks in audiovisual identity verification

    Get PDF
    We describe an algorithm that detects a lack of correspondence between speech and lip motion by detecting and monitoring the degree of synchrony between live audio and visual signals. It is simple, effective, and computationally inexpensive; providing a useful degree of robustness against basic replay attacks and against speech or image forgeries. The method is based on a cross-correlation analysis between two streams of features, one from the audio signal and the other from the image sequence. We argue that such an algorithm forms an effective first barrier against several kinds of replay attack that would defeat existing verification systems based on standard multimodal fusion techniques. In order to provide an evaluation mechanism for the new technique we have augmented the protocols that accompany the BANCA multimedia corpus by defining new scenarios. We obtain 0% equal-error rate (EER) on the simplest scenario and 35% on a more challenging one

    Learnable PINs: Cross-Modal Embeddings for Person Identity

    Full text link
    We propose and investigate an identity sensitive joint embedding of face and voice. Such an embedding enables cross-modal retrieval from voice to face and from face to voice. We make the following four contributions: first, we show that the embedding can be learnt from videos of talking faces, without requiring any identity labels, using a form of cross-modal self-supervision; second, we develop a curriculum learning schedule for hard negative mining targeted to this task, that is essential for learning to proceed successfully; third, we demonstrate and evaluate cross-modal retrieval for identities unseen and unheard during training over a number of scenarios and establish a benchmark for this novel task; finally, we show an application of using the joint embedding for automatically retrieving and labelling characters in TV dramas.Comment: To appear in ECCV 201

    Detecting replay attacks in audiovisual identity verification

    Get PDF
    We describe an algorithm that detects a lack of correspondence between speech and lip motion by detecting and monitoring the degree of synchrony between live audio and visual signals. It is simple, effective, and computationally inexpensive; providing a useful degree of robustness against basic replay attacks and against speech or image forgeries. The method is based on a cross-correlation analysis between two streams of features, one from the audio signal and the other from the image sequence. We argue that such an algorithm forms an effective first barrier against several kinds of replay attack that would defeat existing verification systems based on standard multimodal fusion techniques. In order to provide an evaluation mechanism for the new technique we have augmented the protocols that accompany the BANCA multimedia corpus by defining new scenarios. We obtain 0% equal-error rate (EER) on the simplest scenario and 35% on a more challenging one
    corecore