7,771 research outputs found

    On Acquisition and Analysis of a Dataset Comprising of Gait, Ear and Semantic data

    No full text
    In outdoor scenarios such as surveillance where there is very little control over the environments, complex computer vision algorithms are often required for analysis. However constrained environments, such as walkways in airports where the surroundings and the path taken by individuals can be controlled, provide an ideal application for such systems. Figure 1.1 depicts an idealised constrained environment. The path taken by the subject is restricted to a narrow path and once inside is in a volume where lighting and other conditions are controlled to facilitate biometric analysis. The ability to control the surroundings and the flow of people greatly simplifes the computer vision task, compared to typical unconstrained environments. Even though biometric datasets with greater than one hundred people are increasingly common, there is still very little known about the inter and intra-subject variation in many biometrics. This information is essential to estimate the recognition capability and limits of automatic recognition systems. In order to accurately estimate the inter- and the intra- class variance, substantially larger datasets are required [40]. Covariates such as facial expression, headwear, footwear type, surface type and carried items are attracting increasing attention; although considering the potentially large impact on an individuals biometrics, large trials need to be conducted to establish how much variance results. This chapter is the first description of the multibiometric data acquired using the University of Southampton's Multi-Biometric Tunnel [26, 37]; a biometric portal using automatic gait, face and ear recognition for identification purposes. The tunnel provides a constrained environment and is ideal for use in high throughput security scenarios and for the collection of large datasets. We describe the current state of data acquisition of face, gait, ear, and semantic data and present early results showing the quality and range of data that has been collected. The main novelties of this dataset in comparison with other multi-biometric datasets are: 1. gait data exists for multiple views and is synchronised, allowing 3D reconstruction and analysis; 2. the face data is a sequence of images allowing for face recognition in video; 3. the ear data is acquired in a relatively unconstrained environment, as a subject walks past; and 4. the semantic data is considerably more extensive than has been available previously. We shall aim to show the advantages of this new data in biometric analysis, though the scope for such analysis is considerably greater than time and space allows for here

    A Survey on Ear Biometrics

    No full text
    Recognizing people by their ear has recently received significant attention in the literature. Several reasons account for this trend: first, ear recognition does not suffer from some problems associated with other non contact biometrics, such as face recognition; second, it is the most promising candidate for combination with the face in the context of multi-pose face recognition; and third, the ear can be used for human recognition in surveillance videos where the face may be occluded completely or in part. Further, the ear appears to degrade little with age. Even though, current ear detection and recognition systems have reached a certain level of maturity, their success is limited to controlled indoor conditions. In addition to variation in illumination, other open research problems include hair occlusion; earprint forensics; ear symmetry; ear classification; and ear individuality. This paper provides a detailed survey of research conducted in ear detection and recognition. It provides an up-to-date review of the existing literature revealing the current state-of-art for not only those who are working in this area but also for those who might exploit this new approach. Furthermore, it offers insights into some unsolved ear recognition problems as well as ear databases available for researchers

    On Shape-Mediated Enrolment in Ear Biometrics

    No full text
    Ears are a new biometric with major advantage in that they appear to maintain their shape with increased age. Any automatic biometric system needs enrolment to extract the target area from the background. In ear biometrics the inputs are often human head profile images. Furthermore ear biometrics is concerned with the effects of partial occlusion mostly caused by hair and earrings. We propose an ear enrolment algorithm based on finding the elliptical shape of the ear using a Hough Transform (HT) accruing tolerance to noise and occlusion. Robustness is improved further by enforcing some prior knowledge. We assess our enrolment on two face profile datasets; as well as synthetic occlusion

    The effect of time on ear biometrics

    No full text
    We present an experimental study to demonstrate the effect of the time difference in image acquisition for gallery and probe on the performance of ear recognition. This experimental research is the first study on the time effect on ear biometrics. For the purpose of recognition, we convolve banana wavelets with an ear image and then apply local binary pattern on the convolved image. The histograms of the produced image are then used as features to describe an ear. A histogram intersection technique is then applied on the histograms of two ears to measure the ear similarity for the recognition purposes. We also use analysis of variance (ANOVA) to select features to identify the best banana wavelets for the recognition process. The experimental results show that the recognition rate is only slightly reduced by time. The average recognition rate of 98.5% is achieved for an eleven month-difference between gallery and probe on an un-occluded ear dataset of 1491 images of ears selected from Southampton University ear database

    The ear as a biometric

    No full text
    It is more than 10 years since the first tentative experiments in ear biometrics were conducted and it has now reached the ā€œadolescenceā€ of its development towards a mature biometric. Here we present a timely retrospective of the ensuing research since those early days. Whilst its detailed structure may not be as complex as the iris, we show that the ear has unique security advantages over other biometrics. It is most unusual, even unique, in that it supports not only visual and forensic recognition, but also acoustic recognition at the same time. This, together with its deep three-dimensional structure and its robust resistance to change with age will make it very difficult to counterfeit thus ensuring that the ear will occupy a special place in situations requiring a high degree of protection

    MobiBits: Multimodal Mobile Biometric Database

    Full text link
    This paper presents a novel database comprising representations of five different biometric characteristics, collected in a mobile, unconstrained or semi-constrained setting with three different mobile devices, including characteristics previously unavailable in existing datasets, namely hand images, thermal hand images, and thermal face images, all acquired with a mobile, off-the-shelf device. In addition to this collection of data we perform an extensive set of experiments providing insight on benchmark recognition performance that can be achieved with these data, carried out with existing commercial and academic biometric solutions. This is the first known to us mobile biometric database introducing samples of biometric traits such as thermal hand images and thermal face images. We hope that this contribution will make a valuable addition to the already existing databases and enable new experiments and studies in the field of mobile authentication. The MobiBits database is made publicly available to the research community at no cost for non-commercial purposes.Comment: Submitted for the BIOSIG2018 conference on June 18, 2018. Accepted for publication on July 20, 201

    Conceivable security risks and authentication techniques for smart devices

    Get PDF
    With the rapidly escalating use of smart devices and fraudulent transaction of usersā€™ data from their devices, efficient and reliable techniques for authentication of the smart devices have become an obligatory issue. This paper reviews the security risks for mobile devices and studies several authentication techniques available for smart devices. The results from field studies enable a comparative evaluation of user-preferred authentication mechanisms and their opinions about reliability, biometric authentication and visual authentication techniques

    The image ray transform for structural feature detection

    No full text
    The use of analogies to physical phenomena is an exciting paradigm in computer vision that allows unorthodox approaches to feature extraction, creating new techniques with unique properties. A technique known as the "image ray transform" has been developed based upon an analogy to the propagation of light as rays. The transform analogises an image to a set of glass blocks with refractive index linked to pixel properties and then casts a large number of rays through the image. The course of these rays is accumulated into an output image. The technique can successfully extract tubular and circular features and we show successful circle detection, ear biometrics and retinal vessel extraction. The transform has also been extended through the use of multiple rays arranged as a beam to increase robustness to noise, and we show quantitative results for fully automatic ear recognition, achieving 95.2% rank one recognition across 63 subjects
    • ā€¦
    corecore