36,683 research outputs found

    Editorial Comment on the Special Issue of "Information in Dynamical Systems and Complex Systems"

    Full text link
    This special issue collects contributions from the participants of the "Information in Dynamical Systems and Complex Systems" workshop, which cover a wide range of important problems and new approaches that lie in the intersection of information theory and dynamical systems. The contributions include theoretical characterization and understanding of the different types of information flow and causality in general stochastic processes, inference and identification of coupling structure and parameters of system dynamics, rigorous coarse-grain modeling of network dynamical systems, and exact statistical testing of fundamental information-theoretic quantities such as the mutual information. The collective efforts reported herein reflect a modern perspective of the intimate connection between dynamical systems and information flow, leading to the promise of better understanding and modeling of natural complex systems and better/optimal design of engineering systems

    ESTIMATION OF COST ALLOCATION COEFFICIENTS AT THE FARM LEVEL USING AN ENTROPY APPROACH

    Get PDF
    This paper aims to estimate the farm cost allocation coefficients from whole farm input costs. An entropy approach was developed under a Tobit formulation and was applied to a sample of farms from the 2004 FADN data base for Alentejo region, Southern Portugal. A Generalized Maximum Entropy model and Cross Generalized Entropy model were developed to the sample conditions and were tested. Model results were assessed in terms of their precision and estimation power and were compared with observed data. The entropy approach showed to be a flexible and valid tool to estimate incomplete information, namely regarding farm costs. Keywords: Generalized maximum entropy; costs; estimation; Alentejo, FADN

    A New Robust Regression Method Based on Minimization of Geodesic Distances on a Probabilistic Manifold: Application to Power Laws

    Get PDF
    In regression analysis for deriving scaling laws that occur in various scientific disciplines, usually standard regression methods have been applied, of which ordinary least squares (OLS) is the most popular. In many situations, the assumptions underlying OLS are not fulfilled, and several other approaches have been proposed. However, most techniques address only part of the shortcomings of OLS. We here discuss a new and more general regression method, which we call geodesic least squares regression (GLS). The method is based on minimization of the Rao geodesic distance on a probabilistic manifold. For the case of a power law, we demonstrate the robustness of the method on synthetic data in the presence of significant uncertainty on both the data and the regression model. We then show good performance of the method in an application to a scaling law in magnetic confinement fusion.Comment: Published in Entropy. This is an extended version of our paper at the 34th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (MaxEnt 2014), 21-26 September 2014, Amboise, Franc
    • …
    corecore