3,479 research outputs found

    Wind Power Forecasting Methods Based on Deep Learning: A Survey

    Get PDF
    Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid. Aiming to provide reference strategies for relevant researchers as well as practical applications, this paper attempts to provide the literature investigation and methods analysis of deep learning, enforcement learning and transfer learning in wind speed and wind power forecasting modeling. Usually, wind speed and wind power forecasting around a wind farm requires the calculation of the next moment of the definite state, which is usually achieved based on the state of the atmosphere that encompasses nearby atmospheric pressure, temperature, roughness, and obstacles. As an effective method of high-dimensional feature extraction, deep neural network can theoretically deal with arbitrary nonlinear transformation through proper structural design, such as adding noise to outputs, evolutionary learning used to optimize hidden layer weights, optimize the objective function so as to save information that can improve the output accuracy while filter out the irrelevant or less affected information for forecasting. The establishment of high-precision wind speed and wind power forecasting models is always a challenge due to the randomness, instantaneity and seasonal characteristics

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    Ensemble Reinforcement Learning: A Survey

    Full text link
    Reinforcement Learning (RL) has emerged as a highly effective technique for addressing various scientific and applied problems. Despite its success, certain complex tasks remain challenging to be addressed solely with a single model and algorithm. In response, ensemble reinforcement learning (ERL), a promising approach that combines the benefits of both RL and ensemble learning (EL), has gained widespread popularity. ERL leverages multiple models or training algorithms to comprehensively explore the problem space and possesses strong generalization capabilities. In this study, we present a comprehensive survey on ERL to provide readers with an overview of recent advances and challenges in the field. First, we introduce the background and motivation for ERL. Second, we analyze in detail the strategies that have been successfully applied in ERL, including model averaging, model selection, and model combination. Subsequently, we summarize the datasets and analyze algorithms used in relevant studies. Finally, we outline several open questions and discuss future research directions of ERL. By providing a guide for future scientific research and engineering applications, this survey contributes to the advancement of ERL.Comment: 42 page

    Artificial neural networks in geospatial analysis

    Full text link
    Artificial neural networks are computational models widely used in geospatial analysis for data classification, change detection, clustering, function approximation, and forecasting or prediction. There are many types of neural networks based on learning paradigm and network architectures. Their use is expected to grow with increasing availability of massive data from remote sensing and mobile platforms

    Development of deep reinforcement learning for inverted pendulum

    Get PDF
    This paper presents a modification of the deep Q-network (DQN) in deep reinforcement learning to control the angle of the inverted pendulum (IP). The original DQN method often uses two actions related to two force states like constant negative and positive force values which apply to the cart of IP to maintain the angle between the pendulum and the Y-axis. Due to the changing of too much value of force, the IP may make some oscillation which makes the performance system could be declined. Thus, a modified DQN algorithm is developed based on neural network structure to make a range of force selections for IP to improve the performance of IP. To prove our algorithm, the OpenAI/Gym and Keras libraries are used to develop DQN. All results showed that our proposed controller has higher performance than the original DQN and could be applied to a nonlinear system
    corecore