805 research outputs found

    The stochastic counterpart of conservation laws with heterogeneous conductivity fields: application to deterministic problems and uncertainty quantification

    Full text link
    Conservation laws in the form of elliptic and parabolic partial differential equations (PDEs) are fundamental to the modeling of many problems such as heat transfer and flow in porous media. Many of such PDEs are stochastic due to the presence of uncertainty in the conductivity field. Based on the relation between stochastic diffusion processes and PDEs, Monte Carlo (MC) methods are available to solve these PDEs. These methods are especially relevant for cases where we are interested in the solution in a small subset of the domain. The existing MC methods based on the stochastic formulation require restrictively small time steps for high variance conductivity fields. Moreover, in many applications the conductivity is piecewise constant and the existing methods are not readily applicable in these cases. Here we provide an algorithm to solve one-dimensional elliptic problems that bypasses these two limitations. The methodology is demonstrated using problems governed by deterministic and stochastic PDEs. It is shown that the method provides an efficient alternative to compute the statistical moments of the solution to a stochastic PDE at any point in the domain. A variance reduction scheme is proposed for applying the method for efficient mean calculations

    Analytic Regularity and GPC Approximation for Control Problems Constrained by Linear Parametric Elliptic and Parabolic PDEs

    Get PDF
    This paper deals with linear-quadratic optimal control problems constrained by a parametric or stochastic elliptic or parabolic PDE. We address the (difficult) case that the state equation depends on a countable number of parameters i.e., on σj\sigma_j with jNj\in\N, and that the PDE operator may depend non-affinely on the parameters. We consider tracking-type functionals and distributed as well as boundary controls. Building on recent results in [CDS1, CDS2], we show that the state and the control are analytic as functions depending on these parameters σj\sigma_j. We establish sparsity of generalized polynomial chaos (gpc) expansions of both, state and control, in terms of the stochastic coordinate sequence σ=(σj)j1\sigma = (\sigma_j)_{j\ge 1} of the random inputs, and prove convergence rates of best NN-term truncations of these expansions. Such truncations are the key for subsequent computations since they do {\em not} assume that the stochastic input data has a finite expansion. In the follow-up paper [KS2], we explain two methods how such best NN-term truncations can practically be computed, by greedy-type algorithms as in [SG, Gi1], or by multilevel Monte-Carlo methods as in [KSS]. The sparsity result allows in conjunction with adaptive wavelet Galerkin schemes for sparse, adaptive tensor discretizations of control problems constrained by linear elliptic and parabolic PDEs developed in [DK, GK, K], see [KS2]

    Novel ensemble algorithms for random two-domain parabolic problems

    Full text link
    In this paper, three efficient ensemble algorithms are proposed for fast-solving the random fluid-fluid interaction model. Such a model can be simplified as coupling two heat equations with random diffusion coefficients and a friction parameter due to its complexity and uncertainty. We utilize the Monte Carlo method for the coupled model with random inputs to derive some deterministic fluid-fluid numerical models and use the ensemble idea to realize the fast computation of multiple problems. Our remarkable feature of these algorithms is employing the same coefficient matrix for multiple linear systems, significantly reducing the computational cost. By data-passing partitioned techniques, we can decouple the numerical models into two smaller sub-domain problems and achieve parallel computation. Theoretically, we derive that both algorithms are unconditionally stable and convergent. Finally, numerical experiments are conducted not only to support the theoretical results but also to validate the exclusive feature of the proposed algorithms

    Higher-order Quasi-Monte Carlo Training of Deep Neural Networks

    Full text link
    We present a novel algorithmic approach and an error analysis leveraging Quasi-Monte Carlo points for training deep neural network (DNN) surrogates of Data-to-Observable (DtO) maps in engineering design. Our analysis reveals higher-order consistent, deterministic choices of training points in the input data space for deep and shallow Neural Networks with holomorphic activation functions such as tanh. These novel training points are proved to facilitate higher-order decay (in terms of the number of training samples) of the underlying generalization error, with consistency error bounds that are free from the curse of dimensionality in the input data space, provided that DNN weights in hidden layers satisfy certain summability conditions. We present numerical experiments for DtO maps from elliptic and parabolic PDEs with uncertain inputs that confirm the theoretical analysis
    corecore