16,164 research outputs found

    Cryptanalysis and Improvement on Robust Three-Factor Remote User Authentication Scheme with Key Agreement for Multimedia System

    Get PDF
    A three-factor authentication combines biometrics information with user password and smart card to provide security-enhanced user authentication. An proposed user authentication scheme improved Das’s scheme. But An’s scheme is not secure against denial of service attack in login phase, forgery attack. Li et al. pointed out them and proposed three-factor remote user authentication scheme with key agreement. However, Li et al’s scheme still has some security problem. In this paper, we present a cryptanalysis and improvement of Li et al.’s remote user authentication scheme

    Enhanced Biometrics-based Remote User Authentication Scheme Using Smart Cards

    Get PDF
    Authentication and key exchange are fundamental techniques for enabling secure communication over mobile networks. In order to reduce implementation complexity and achieve computation efficiency, design issues for efficient and secure biometrics-based remote user authentication scheme have been extensively investigated by research community in these years. Recently, two well-designed biometrics-based authentication schemes using smart cards are introduced by Li and Hwang and Li et al., respectively. Li and Hwang proposed an efficient biometrics-based remote user authentication scheme using smart card and Li et al. proposed an improvement. The authors of both schemes claimed that their protocol delivers important security features and system functionalities, such as without synchronized clock, freely changes password, mutual authentication, as well as low computation costs. However, these two schemes still have much space for security enhancement. In this paper, we first demonstrate a series of vulnerabilities on these two schemes. Then, an enhanced scheme with corresponding remedies is proposed to eliminate all identified security flaws in both schemes

    AN ENHANCED BIOMETRIC BASED REMOTE USER AUTHENTICATION SCHEME USING SMART CARD

    Get PDF
    In remote authentication scheme, a remote user can communicate with server over open networks even though the physical distance is much far. Before interaction, they require to establish common session key by authenticating each other. Recently in 2014, Kumari et al. proposed the efficient scheme for remote user authentication. However in this paper, we show that the Kumari et al.’s scheme is vulnerably susceptible to the Insider Attack, Stolen Verifier Attack, Session Key Disclosure Attack, Password Guessing Attack, Modification Attack, User Impersonation Attack, Replay Attack, Shoulder Surfing Attack and Denial of Service Attack. Afterwards, we have proposed an improved remote user authentication scheme to deal with these attacks and other attacks

    An Improved Timestamp-Based Password Authentication Scheme Using Smart Cards

    Full text link
    With the recent proliferation of distributed systems and networking, remote authentication has become a crucial task in many networking applications. Various schemes have been proposed so far for the two-party remote authentication; however, some of them have been proved to be insecure. In this paper, we propose an efficient timestamp-based password authentication scheme using smart cards. We show various types of forgery attacks against a previously proposed timestamp-based password authentication scheme and improve that scheme to ensure robust security for the remote authentication process, keeping all the advantages that were present in that scheme. Our scheme successfully defends the attacks that could be launched against other related previous schemes. We present a detailed cryptanalysis of previously proposed Shen et. al scheme and an analysis of the improved scheme to show its improvements and efficiency.Comment: 6 page

    Cryptanalysis of Yang-Wang-Chang's Password Authentication Scheme with Smart Cards

    Full text link
    In 2005, Yang, Wang, and Chang proposed an improved timestamp-based password authentication scheme in an attempt to overcome the flaws of Yang-Shieh_s legendary timestamp-based remote authentication scheme using smart cards. After analyzing the improved scheme proposed by Yang-Wang-Chang, we have found that their scheme is still insecure and vulnerable to four types of forgery attacks. Hence, in this paper, we prove that, their claim that their scheme is intractable is incorrect. Also, we show that even an attack based on Sun et al._s attack could be launched against their scheme which they claimed to resolve with their proposal.Comment: 3 Page
    corecore