46,162 research outputs found

    An enhanced model for stochastic coordination

    Get PDF
    Publicado em "Proceedings of the First International Workshop on Formal Methods for and on the Cloud, iFMCloud@IFM 2016, Reykjavik, Iceland, 4th June 2016"Applications developed over the cloud coordinate several, often anonymous, computational resources, distributed over different execution nodes, within flexible architectures. Coordination models able to represent quantitative data provide a powerful basis for their analysis and validation. This paper extends IMCreo, a semantic model for Stochastic reo based on interactive Markov chains, to enhance its scalability, by regarding each channel and node, as well as interface components, as independent stochastic processes that may (or may not) synchronise with the rest of the coordination circuit.Luis S. Barbosa is supported by grant SFRH/BSAB/113890/2015 from FCT, the Portuguese Foundation for Science and Tecnhology. This research is financed by the ERDF COMPETE 2020 Programme within project POCI-01-0145-FEDER-00696, and by National Funds through FCT as part of project UID/EEA/50014/2013

    Stochastic model for the 3D microstructure of pristine and cyclically aged cathodes in Li-ion batteries

    Full text link
    It is well-known that the microstructure of electrodes in lithium-ion batteries strongly affects their performance. Vice versa, the microstructure can exhibit strong changes during the usage of the battery due to aging effects. For a better understanding of these effects, mathematical analysis and modeling has turned out to be of great help. In particular, stochastic 3D microstructure models have proven to be a powerful and very flexible tool to generate various kinds of particle-based structures. Recently, such models have been proposed for the microstructure of anodes in lithium-ion energy and power cells. In the present paper, we describe a stochastic modeling approach for the 3D microstructure of cathodes in a lithium-ion energy cell, which differs significantly from the one observed in anodes. The model for the cathode data enhances the ideas of the anode models, which have been developed so far. It is calibrated using 3D tomographic image data from pristine as well as two aged cathodes. A validation based on morphological image characteristics shows that the model is able to realistically describe both, the microstructure of pristine and aged cathodes. Thus, we conclude that the model is suitable to generate virtual, but realistic microstructures of lithium-ion cathodes

    Fluctuations and oscillations in a simple epidemic model

    Full text link
    We show that the simplest stochastic epidemiological models with spatial correlations exhibit two types of oscillatory behaviour in the endemic phase. In a large parameter range, the oscillations are due to resonant amplification of stochastic fluctuations, a general mechanism first reported for predator-prey dynamics. In a narrow range of parameters that includes many infectious diseases which confer long lasting immunity the oscillations persist for infinite populations. This effect is apparent in simulations of the stochastic process in systems of variable size, and can be understood from the phase diagram of the deterministic pair approximation equations. The two mechanisms combined play a central role in explaining the ubiquity of oscillatory behaviour in real data and in simulation results of epidemic and other related models.Comment: acknowledgments added; a typo in the discussion that follows Eq. (3) is corrected

    Stochastic model of solvent exchange in the first coordination shell of aqua Ions

    Get PDF
    Ion microsolvation is a basic, yet fundamental, process of ionic solutions underlying many relevant phenomena in either biological or nanotechnological applications, such as solvent reorganization energy, ion transport, catalytic activity, and so on. As a consequence, it is a topic of extensive investigations by various experimental techniques, ranging from X-ray diffraction to NMR relaxation and from calorimetry to vibrational spectroscopy, and theoretical approaches, especially those based on molecular dynamics (MD) simulations. The conventional microscopic view of ion solvation is usually provided by a "static" cluster model representing the first ion-solvent coordination shell. Despite the merits of such a simple model, however, ion coordination in solution should be better regarded as a complex population of dynamically interchanging molecular configurations. Such a more comprehensive view is more subtle to characterize and often elusive to standard approaches. In this work, we report on an effective computational strategy aiming at providing a detailed picture of solvent coordination and exchange around aqua ions, thus including the main structural, thermodynamic, and dynamic properties of ion microsolvation, such as the most probable first-shell complex structures, the corresponding free energies, the interchanging energy barriers, and the solvent-exchange rates. Assuming the solvent coordination number as an effective reaction coordinate and combining MD simulations with enhanced sampling and master-equation approaches, we propose a stochastic model suitable for properly describing, at the same time, the thermodynamics and kinetics of ion-water coordination. The model is successfully tested toward various divalent ions (Ca2+, Zn2+, Hg2+, and Cd2+) in aqueous solution, considering also the case of a high ionic concentration. Results show a very good agreement with those issuing from brute-force MD simulations, when available, and support the reliable prediction of rare ion-water complexes and slow water exchange rates not easily accessible to usual computational methods
    • …
    corecore