2,404 research outputs found

    A Centralized Mechanism to Make Predictions Based on Data From Multiple WSNs

    Full text link
    In this work, we present a method that exploits a scenario with inter-Wireless Sensor Networks (WSNs) information exchange by making predictions and adapting the workload of a WSN according to their outcomes. We show the feasibility of an approach that intelligently utilizes information produced by other WSNs that may or not belong to the same administrative domain. To illustrate how the predictions using data from external WSNs can be utilized, a specific use-case is considered, where the operation of a WSN measuring relative humidity is optimized using the data obtained from a WSN measuring temperature. Based on a dedicated performance score, the simulation results show that this new approach can find the optimal operating point associated to the trade-off between energy consumption and quality of measurements. Moreover, we outline the additional challenges that need to be overcome, and draw conclusions to guide the future work in this field.Comment: 10 pages, simulation results and figures. Published i

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Formal Probabilistic Analysis of a Wireless Sensor Network for Forest Fire Detection

    Full text link
    Wireless Sensor Networks (WSNs) have been widely explored for forest fire detection, which is considered a fatal threat throughout the world. Energy conservation of sensor nodes is one of the biggest challenges in this context and random scheduling is frequently applied to overcome that. The performance analysis of these random scheduling approaches is traditionally done by paper-and-pencil proof methods or simulation. These traditional techniques cannot ascertain 100% accuracy, and thus are not suitable for analyzing a safety-critical application like forest fire detection using WSNs. In this paper, we propose to overcome this limitation by applying formal probabilistic analysis using theorem proving to verify scheduling performance of a real-world WSN for forest fire detection using a k-set randomized algorithm as an energy saving mechanism. In particular, we formally verify the expected values of coverage intensity, the upper bound on the total number of disjoint subsets, for a given coverage intensity, and the lower bound on the total number of nodes.Comment: In Proceedings SCSS 2012, arXiv:1307.802

    On Modeling Geometric Joint Sink Mobility with Delay-Tolerant Cluster-less Wireless Sensor Networks

    Full text link
    Moving Sink (MS) in Wireless Sensor Networks (WSNs) has appeared as a blessing because it collects data directly from the nodes where the concept of relay nodes is becomes obsolete. There are, however, a few challenges to be taken care of, like data delay tolerance and trajectory of MS which is NP-hard. In our proposed scheme, we divide the square field in small squares. Middle point of the partitioned area is the sojourn location of the sink, and nodes around MS are in its transmission range, which send directly the sensed data in a delay-tolerant fashion. Two sinks are moving simultaneously; one inside and having four sojourn locations and other in outer trajectory having twelve sojourn locations. Introduction of the joint mobility enhances network life and ultimately throughput. As the MS comes under the NP-hard problem, we convert it into a geometric problem and define it as, Geometric Sink Movement (GSM). A set of linear programming equations has also been given in support of GSM which prolongs network life time

    MODLEACH: A Variant of LEACH for WSNs

    Full text link
    Wireless sensor networks are appearing as an emerging need for mankind. Though, Such networks are still in research phase however, they have high potential to be applied in almost every field of life. Lots of research is done and a lot more is awaiting to be standardized. In this work, cluster based routing in wireless sensor networks is studied precisely. Further, we modify one of the most prominent wireless sensor network's routing protocol "LEACH" as modified LEACH (MODLEACH) by introducing \emph{efficient cluster head replacement scheme} and \emph{dual transmitting power levels}. Our modified LEACH, in comparison with LEACH out performs it using metrics of cluster head formation, through put and network life. Afterwards, hard and soft thresholds are implemented on modified LEACH (MODLEACH) that boast the performance even more. Finally a brief performance analysis of LEACH, Modified LEACH (MODLEACH), MODLEACH with hard threshold (MODLEACHHT) and MODLEACH with soft threshold (MODLEACHST) is undertaken considering metrics of throughput, network life and cluster head replacements.Comment: IEEE 8th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA'13), Compiegne, Franc
    • …
    corecore