4 research outputs found

    Robotic Marine Exploration

    Full text link
    ME450 Capstone Design and Manufacturing Experience: Fall 2020Develop a cheap alternative robot design that can map the seafloor accurately.http://deepblue.lib.umich.edu/bitstream/2027.42/164448/1/Robotic_Marine_Exploration.pd

    An Energy-Optimal Warm-Up Strategy for Li-Ion Batteries and Its Approximations

    No full text

    Control of Lithium-Ion Battery Warm-up from Sub-zero Temperatures

    Full text link
    The archetype of rechargeable technology, Li-ion batteries have over the last decade benefited from improvements in material science through increased energy and power density. Although widely adopted, these batteries suffer from significant performance degradation at low temperatures, posing a challenge for automotive applications, especially during vehicle start-up. This begs the question: if one was to seek an energy optimal warm-up strategy, how would it look? Moreover, if as much as 22% of reduction in range of electric vehicles is attributable to onboard battery heating systems, would an optimal heating strategy alleviate this energy drain and at what drawback? This thesis addresses these questions. To that end, we pose and solve two energy-optimal warm-up strategies in addition to developing tools that will enable one to make prudent decisions on whether warm-up is feasible if the battery energy state falls too low. In this dissertation, we address the four main aspects of control design modeling, control, verification and adaptation. There are two primary control strategies that are designed in this dissertation and tools to analyze them are developed. The first warm-up scenario involves a receding horizon optimal control problem whose objective trades-offs increase in battery's temperature by self-heating against energy expended. The shape of battery current is restricted to be bi-directional pulses that charge and discharge the cell at relatively high frequencies via an external capacitor. The optimal control problem solves for the amplitude of the pulse train and the results clarify issues associated with capacitor size, time and lost energy stored. The second control policy is deduced by solving an optimal discharge control problem for the trajectory of power that could self-heat the cell and at the same time feed an external heater whilst minimizing the loss in state of charge. Batteries inevitably age as they are used and consequently their dynamics also change. Since both proposed methods are model based, the last of part of this dissertation proposes a novel augmented-state-space partitioning technique which can be used to design cascaded nonlinear estimators. Using this partitioning technique, the relative average estimability of the different states of the electrical and thermal model is studied and Dual Extended Kalman Filters are built and validated in simulations. All the methods developed are demonstrated via a combination of simulation and experiments on Iron Phosphate or Nickel Manganese Cobalt Li-ion battery cell which have high power capability and could be used in replacement of 12V starter batteries or 48V start-stop applications.PHDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/136964/1/elemsn_1.pd

    Investigations of a Surrogate Fuel Based on Fischer-Tropsch GTL and CTL in CVCC, IDI and DI Compression Ignition Engines

    Get PDF
    With the increase in availability, feedstocks, and properties of alternative fuels, compatibility issues emerge between current engine platforms often requiring a limit on the blend percentage of alternative fuel in conventional fuel or alteration to the engine platform. Two key metrics were identified, autoignition quality and lubrication characteristics, as vital for the proper function of a compression ignition engine, and if the blend of alternative fuels matches these two criteria for the diesel standard, then the resulting blend percentage can be considered as a viable alternative for complete replacement of conventional petroleum ULSD. Autoignition quality was matched using blends S-8, DCN 62, and IPK, DCN 26, with three blends labeled as B1, B2, and B3. A modified DCN equation was then derived for the F-T fuels based on measured ID, CD, and DCN. The results of which determined that a 60% S-8 and 40% IPK blend percentage match the DCN set point of 50 and denoted in the text as S1. The lubricity investigation found that a 3% of a biodiesel compound, methyl oleate, improved average friction force and wear scar depth to within 1% of ULSD. This final surrogate blend is denoted as S2 for the duration of this study. All researched neat fuels and blends were investigated in the CVCC for LTHR, NTC, HTHR, peak pressure ringing, and energy released and duration of each combustion region. The analysis of peak pressure ringing indicated an increase in combustion stability for S2 when compared to ULSD. The LTHR analysis revealed that S2 has a much longer NTC region when compared to ULSD despite its increase in DCN. Three representative fuels were chosen for further investigation in both dual combustion chamber indirect injection and common rail direct injection engine platforms: ULSD (baseline), S2, and IPK. In both engines, the combustion of S2 resulted in a reduction in ringing intensity, BSFC, NOx emissions, CO2 emissions. No significant differences were found in peak pressure, peak pressure rise rate, or combustion phasing between the combustion of S2 and the combustion of ULSD indicating its high viability as a functional drop-in fuel replacement
    corecore