5,909 research outputs found

    Individual Fairness in Pipelines

    Get PDF
    It is well understood that a system built from individually fair components may not itself be individually fair. In this work, we investigate individual fairness under pipeline composition. Pipelines differ from ordinary sequential or repeated composition in that individuals may drop out at any stage, and classification in subsequent stages may depend on the remaining "cohort" of individuals. As an example, a company might hire a team for a new project and at a later point promote the highest performer on the team. Unlike other repeated classification settings, where the degree of unfairness degrades gracefully over multiple fair steps, the degree of unfairness in pipelines can be arbitrary, even in a pipeline with just two stages. Guided by a panoply of real-world examples, we provide a rigorous framework for evaluating different types of fairness guarantees for pipelines. We show that na\"{i}ve auditing is unable to uncover systematic unfairness and that, in order to ensure fairness, some form of dependence must exist between the design of algorithms at different stages in the pipeline. Finally, we provide constructions that permit flexibility at later stages, meaning that there is no need to lock in the entire pipeline at the time that the early stage is constructed

    Responsible Design Patterns for Machine Learning Pipelines

    Full text link
    Integrating ethical practices into the AI development process for artificial intelligence (AI) is essential to ensure safe, fair, and responsible operation. AI ethics involves applying ethical principles to the entire life cycle of AI systems. This is essential to mitigate potential risks and harms associated with AI, such as algorithm biases. To achieve this goal, responsible design patterns (RDPs) are critical for Machine Learning (ML) pipelines to guarantee ethical and fair outcomes. In this paper, we propose a comprehensive framework incorporating RDPs into ML pipelines to mitigate risks and ensure the ethical development of AI systems. Our framework comprises new responsible AI design patterns for ML pipelines identified through a survey of AI ethics and data management experts and validated through real-world scenarios with expert feedback. The framework guides AI developers, data scientists, and policy-makers to implement ethical practices in AI development and deploy responsible AI systems in production.Comment: 20 pages, 4 figures, 5 table

    The SPATIAL Architecture:Design and Development Experiences from Gauging and Monitoring the AI Inference Capabilities of Modern Applications

    Get PDF
    Despite its enormous economical and societal impact, lack of human-perceived control and safety is re-defining the design and development of emerging AI-based technologies. New regulatory requirements mandate increased human control and oversight of AI, transforming the development practices and responsibilities of individuals interacting with AI. In this paper, we present the SPATIAL architecture, a system that augments modern applications with capabilities to gauge and monitor trustworthy properties of AI inference capabilities. To design SPATIAL, we first explore the evolution of modern system architectures and how AI components and pipelines are integrated. With this information, we then develop a proof-of-concept architecture that analyzes AI models in a human-in-the-loop manner. SPATIAL provides an AI dashboard for allowing individuals interacting with applications to obtain quantifiable insights about the AI decision process. This information is then used by human operators to comprehend possible issues that influence the performance of AI models and adjust or counter them. Through rigorous benchmarks and experiments in realworld industrial applications, we demonstrate that SPATIAL can easily augment modern applications with metrics to gauge and monitor trustworthiness, however, this in turn increases the complexity of developing and maintaining systems implementing AI. Our work highlights lessons learned and experiences from augmenting modern applications with mechanisms that support regulatory compliance of AI. In addition, we also present a road map of on-going challenges that require attention to achieve robust trustworthy analysis of AI and greater engagement of human oversight

    Carbon Responder: Coordinating Demand Response for the Datacenter Fleet

    Full text link
    The increasing integration of renewable energy sources results in fluctuations in carbon intensity throughout the day. To mitigate their carbon footprint, datacenters can implement demand response (DR) by adjusting their load based on grid signals. However, this presents challenges for private datacenters with diverse workloads and services. One of the key challenges is efficiently and fairly allocating power curtailment across different workloads. In response to these challenges, we propose the Carbon Responder framework. The Carbon Responder framework aims to reduce the carbon footprint of heterogeneous workloads in datacenters by modulating their power usage. Unlike previous studies, Carbon Responder considers both online and batch workloads with different service level objectives and develops accurate performance models to achieve performance-aware power allocation. The framework supports three alternative policies: Efficient DR, Fair and Centralized DR, and Fair and Decentralized DR. We evaluate Carbon Responder polices using production workload traces from a private hyperscale datacenter. Our experimental results demonstrate that the efficient Carbon Responder policy reduces the carbon footprint by around 2x as much compared to baseline approaches adapted from existing methods. The fair Carbon Responder policies distribute the performance penalties and carbon reduction responsibility fairly among workloads

    Connecting Fairness in Machine Learning with Public Health Equity

    Full text link
    Machine learning (ML) has become a critical tool in public health, offering the potential to improve population health, diagnosis, treatment selection, and health system efficiency. However, biases in data and model design can result in disparities for certain protected groups and amplify existing inequalities in healthcare. To address this challenge, this study summarizes seminal literature on ML fairness and presents a framework for identifying and mitigating biases in the data and model. The framework provides guidance on incorporating fairness into different stages of the typical ML pipeline, such as data processing, model design, deployment, and evaluation. To illustrate the impact of biases in data on ML models, we present examples that demonstrate how systematic biases can be amplified through model predictions. These case studies suggest how the framework can be used to prevent these biases and highlight the need for fair and equitable ML models in public health. This work aims to inform and guide the use of ML in public health towards a more ethical and equitable outcome for all populations
    • …
    corecore