4 research outputs found

    Quantifying the Contextualization of Word Representations with Semantic Class Probing

    Get PDF
    Pretrained language models have achieved a new state of the art on many NLP tasks, but there are still many open questions about how and why they work so well. We investigate the contextualization of words in BERT. We quantify the amount of contextualization, i.e., how well words are interpreted in context, by studying the extent to which semantic classes of a word can be inferred from its contextualized embeddings. Quantifying contextualization helps in understanding and utilizing pretrained language models. We show that top layer representations achieve high accuracy inferring semantic classes; that the strongest contextualization effects occur in the lower layers; that local context is mostly sufficient for semantic class inference; and that top layer representations are more task-specific after finetuning while lower layer representations are more transferable. Finetuning uncovers task related features, but pretrained knowledge is still largely preserved

    Dansk betydningsinventar i et datalingvistisk perspektiv

    Get PDF
    In this paper we investigate the Danish sense inventory from a paradigmatic and a syntagmatic perspective, respectively, and we present a collection of related lexical semantic resources that we have developed in collaboration between The Society for Danish Language and Literature and The University of Copenhagen. The resources comprise a Danish wordnet (DanNet), The Danish FrameNet Lexicon, and The Danish Sentiment Lexicon. All three resources are designed to enable semantic processing to be used in digital humanities research as well as more broadly in language-centric technology development. Finally, in order to illustrate the use of the resources when processing running text, we provide some annotation examples of each resource

    Learning of a multilingual bitaxonomy of Wikipedia and its application to semantic predicates

    Get PDF
    The ability to extract hypernymy information on a large scale is becoming increasingly important in natural language processing, an area of the artificial intelligence which deals with the processing and understanding of natural language. While initial studies extracted this type of information from textual corpora by means of lexico-syntactic patterns, over time researchers moved to alternative, more structured sources of knowledge, such as Wikipedia. After the first attempts to extract is-a information fromWikipedia categories, a full line of research gave birth to numerous knowledge bases containing information which, however, is either incomplete or irremediably bound to English. To this end we put forward MultiWiBi, the first approach to the construction of a multilingual bitaxonomy which exploits the inner connection between Wikipedia pages and Wikipedia categories to induce a wide-coverage and fine-grained integrated taxonomy. A series of experiments show state-of-the-art results against all the available taxonomic resources available in the literature, also with respect to two novel measures of comparison. Another dimension where existing resources usually fall short is their degree of multilingualism. While knowledge is typically language agnostic, currently resources are able to extract relevant information only in languages providing highquality tools. In contrast, MultiWiBi does not leave any language behind: we show how to taxonomize Wikipedia in an arbitrary language and in a way that is fully independent of additional resources. At the core of our approach lies, in fact, the idea that the English version of Wikipedia can be linguistically exploited as a pivot to project the taxonomic information extracted from English to any other Wikipedia language in order to have a bitaxonomy in a second, arbitrary language; as a result, not only concepts which have an English equivalent are covered, but also those concepts which are not lexicalized in the source language. We also present the impact of having the taxonomized encyclopedic knowledge offered by MultiWiBi embedded into a semantic model of predicates (SPred) which crucially leverages Wikipedia to generalize collections of related noun phrases to infer a probability distribution over expected semantic classes. We applied SPred to a word sense disambiguation task and show that, when MultiWiBi is plugged in to replace an internal component, SPred’s generalization power increases as well as its precision and recall. Finally, we also published MultiWiBi as linked data, a paradigm which fosters interoperability and interconnection among resources and tools through the publication of data on the Web, and developed a public interface which lets the users navigate through MultiWiBi’s taxonomic structure in a graphical, captivating manner
    corecore