178 research outputs found

    Consistent Polyhedral Surrogates for Top-kk Classification and Variants

    Full text link
    Top-kk classification is a generalization of multiclass classification used widely in information retrieval, image classification, and other extreme classification settings. Several hinge-like (piecewise-linear) surrogates have been proposed for the problem, yet all are either non-convex or inconsistent. For the proposed hinge-like surrogates that are convex (i.e., polyhedral), we apply the recent embedding framework of Finocchiaro et al. (2019; 2022) to determine the prediction problem for which the surrogate is consistent. These problems can all be interpreted as variants of top-kk classification, which may be better aligned with some applications. We leverage this analysis to derive constraints on the conditional label distributions under which these proposed surrogates become consistent for top-kk. It has been further suggested that every convex hinge-like surrogate must be inconsistent for top-kk. Yet, we use the same embedding framework to give the first consistent polyhedral surrogate for this problem

    In Defense of Softmax Parametrization for Calibrated and Consistent Learning to Defer

    Full text link
    Enabling machine learning classifiers to defer their decision to a downstream expert when the expert is more accurate will ensure improved safety and performance. This objective can be achieved with the learning-to-defer framework which aims to jointly learn how to classify and how to defer to the expert. In recent studies, it has been theoretically shown that popular estimators for learning to defer parameterized with softmax provide unbounded estimates for the likelihood of deferring which makes them uncalibrated. However, it remains unknown whether this is due to the widely used softmax parameterization and if we can find a softmax-based estimator that is both statistically consistent and possesses a valid probability estimator. In this work, we first show that the cause of the miscalibrated and unbounded estimator in prior literature is due to the symmetric nature of the surrogate losses used and not due to softmax. We then propose a novel statistically consistent asymmetric softmax-based surrogate loss that can produce valid estimates without the issue of unboundedness. We further analyze the non-asymptotic properties of our method and empirically validate its performance and calibration on benchmark datasets.Comment: NeurIPS 202

    Supervised classification and mathematical optimization

    Get PDF
    Data Mining techniques often ask for the resolution of optimization problems. Supervised Classification, and, in particular, Support Vector Machines, can be seen as a paradigmatic instance. In this paper, some links between Mathematical Optimization methods and Supervised Classification are emphasized. It is shown that many different areas of Mathematical Optimization play a central role in off-the-shelf Supervised Classification methods. Moreover, Mathematical Optimization turns out to be extremely useful to address important issues in Classification, such as identifying relevant variables, improving the interpretability of classifiers or dealing with vagueness/noise in the data.Ministerio de Ciencia e InnovaciónJunta de Andalucí

    Supervised Classification and Mathematical Optimization

    Get PDF
    Data Mining techniques often ask for the resolution of optimization problems. Supervised Classification, and, in particular, Support Vector Machines, can be seen as a paradigmatic instance. In this paper, some links between Mathematical Optimization methods and Supervised Classification are emphasized. It is shown that many different areas of Mathematical Optimization play a central role in off-the-shelf Supervised Classification methods. Moreover, Mathematical Optimization turns out to be extremely useful to address important issues in Classification, such as identifying relevant variables, improving the interpretability of classifiers or dealing with vagueness/noise in the data

    The Mathematics of Phylogenomics

    Get PDF
    The grand challenges in biology today are being shaped by powerful high-throughput technologies that have revealed the genomes of many organisms, global expression patterns of genes and detailed information about variation within populations. We are therefore able to ask, for the first time, fundamental questions about the evolution of genomes, the structure of genes and their regulation, and the connections between genotypes and phenotypes of individuals. The answers to these questions are all predicated on progress in a variety of computational, statistical, and mathematical fields. The rapid growth in the characterization of genomes has led to the advancement of a new discipline called Phylogenomics. This discipline results from the combination of two major fields in the life sciences: Genomics, i.e., the study of the function and structure of genes and genomes; and Molecular Phylogenetics, i.e., the study of the hierarchical evolutionary relationships among organisms and their genomes. The objective of this article is to offer mathematicians a first introduction to this emerging field, and to discuss specific mathematical problems and developments arising from phylogenomics.Comment: 41 pages, 4 figure

    A learning-based approach to multi-agent decision-making

    Full text link
    We propose a learning-based methodology to reconstruct private information held by a population of interacting agents in order to predict an exact outcome of the underlying multi-agent interaction process, here identified as a stationary action profile. We envision a scenario where an external observer, endowed with a learning procedure, is allowed to make queries and observe the agents' reactions through private action-reaction mappings, whose collective fixed point corresponds to a stationary profile. By adopting a smart query process to iteratively collect sensible data and update parametric estimates, we establish sufficient conditions to assess the asymptotic properties of the proposed learning-based methodology so that, if convergence happens, it can only be towards a stationary action profile. This fact yields two main consequences: i) learning locally-exact surrogates of the action-reaction mappings allows the external observer to succeed in its prediction task, and ii) working with assumptions so general that a stationary profile is not even guaranteed to exist, the established sufficient conditions hence act also as certificates for the existence of such a desirable profile. Extensive numerical simulations involving typical competitive multi-agent control and decision making problems illustrate the practical effectiveness of the proposed learning-based approach
    corecore