9,925 research outputs found

    Improved Bounds and Schemes for the Declustering Problem

    Get PDF
    The declustering problem is to allocate given data on parallel working storage devices in such a manner that typical requests find their data evenly distributed on the devices. Using deep results from discrepancy theory, we improve previous work of several authors concerning range queries to higher-dimensional data. We give a declustering scheme with an additive error of Od(logd1M)O_d(\log^{d-1} M) independent of the data size, where dd is the dimension, MM the number of storage devices and d1d-1 does not exceed the smallest prime power in the canonical decomposition of MM into prime powers. In particular, our schemes work for arbitrary MM in dimensions two and three. For general dd, they work for all Md1M\geq d-1 that are powers of two. Concerning lower bounds, we show that a recent proof of a Ωd(logd12M)\Omega_d(\log^{\frac{d-1}{2}} M) bound contains an error. We close the gap in the proof and thus establish the bound.Comment: 19 pages, 1 figur

    Approximating Hereditary Discrepancy via Small Width Ellipsoids

    Full text link
    The Discrepancy of a hypergraph is the minimum attainable value, over two-colorings of its vertices, of the maximum absolute imbalance of any hyperedge. The Hereditary Discrepancy of a hypergraph, defined as the maximum discrepancy of a restriction of the hypergraph to a subset of its vertices, is a measure of its complexity. Lovasz, Spencer and Vesztergombi (1986) related the natural extension of this quantity to matrices to rounding algorithms for linear programs, and gave a determinant based lower bound on the hereditary discrepancy. Matousek (2011) showed that this bound is tight up to a polylogarithmic factor, leaving open the question of actually computing this bound. Recent work by Nikolov, Talwar and Zhang (2013) showed a polynomial time O~(log3n)\tilde{O}(\log^3 n)-approximation to hereditary discrepancy, as a by-product of their work in differential privacy. In this paper, we give a direct simple O(log3/2n)O(\log^{3/2} n)-approximation algorithm for this problem. We show that up to this approximation factor, the hereditary discrepancy of a matrix AA is characterized by the optimal value of simple geometric convex program that seeks to minimize the largest \ell_{\infty} norm of any point in a ellipsoid containing the columns of AA. This characterization promises to be a useful tool in discrepancy theory

    Geometry of sets of quantum maps: a generic positive map acting on a high-dimensional system is not completely positive

    Full text link
    We investigate the set a) of positive, trace preserving maps acting on density matrices of size N, and a sequence of its nested subsets: the sets of maps which are b) decomposable, c) completely positive, d) extended by identity impose positive partial transpose and e) are superpositive. Working with the Hilbert-Schmidt (Euclidean) measure we derive tight explicit two-sided bounds for the volumes of all five sets. A sample consequence is the fact that, as N increases, a generic positive map becomes not decomposable and, a fortiori, not completely positive. Due to the Jamiolkowski isomorphism, the results obtained for quantum maps are closely connected to similar relations between the volume of the set of quantum states and the volumes of its subsets (such as states with positive partial transpose or separable states) or supersets. Our approach depends on systematic use of duality to derive quantitative estimates, and on various tools of classical convexity, high-dimensional probability and geometry of Banach spaces, some of which are not standard.Comment: 34 pages in Latex including 3 figures in eps, ver 2: minor revision

    Complexity vs energy: theory of computation and theoretical physics

    No full text

    The existence of thick triangulations -- an "elementary" proof

    Get PDF
    We provide an alternative, simpler proof of the existence of thick triangulations for noncompact C1\mathcal{C}^1 manifolds. Moreover, this proof is simpler than the original one given in \cite{pe}, since it mainly uses tools of elementary differential topology. The role played by curvatures in this construction is also emphasized.Comment: 7 pages Short not
    corecore