4,338 research outputs found

    Millimeter wave experiment for ATS-F

    Get PDF
    A detailed description of spaceborne equipment is provided. The equipment consists of two transmitters radiating signals at 20 and 30 GHz from either U.S. coverage horn antennas or a narrow beam parabolic antenna. Three modes of operation are provided: a continuous wave mode, a multitone mode in which nine spectral lines having 180 MHz separation and spaced symmetrically about each carrier, and a communications mode in which communications signals from the main spacecraft transponder are modulated on the two carriers. Detailed performance attained in the flight/prototype model of the equipment is presented both under laboratory conditions and under environmental extremes. Provisions made for ensuring reliability in space operation are described. Also described the bench test equipment developed for use with the experiment, and a summary of the new technology is included

    Breadboard linear array scan imager using LSI solid-state technology

    Get PDF
    The performance of large scale integration photodiode arrays in a linear array scan (pushbroom) breadboard was evaluated for application to multispectral remote sensing of the earth's resources. The technical approach, implementation, and test results of the program are described. Several self scanned linear array visible photodetector focal plane arrays were fabricated and evaluated in an optical bench configuration. A 1728-detector array operating in four bands (0.5 - 1.1 micrometer) was evaluated for noise, spectral response, dynamic range, crosstalk, MTF, noise equivalent irradiance, linearity, and image quality. Other results include image artifact data, temporal characteristics, radiometric accuracy, calibration experience, chip alignment, and array fabrication experience. Special studies and experimentation were included in long array fabrication and real-time image processing for low-cost ground stations, including the use of computer image processing. High quality images were produced and all objectives of the program were attained

    Second-order neural core for bioinspired focal-plane dynamic image processing in CMOS

    Get PDF
    Based on studies of the mammalian retina, a bioinspired model for mixed-signal array processing has been implemented on silicon. This model mimics the way in which images are processed at the front-end of natural visual pathways, by means of programmable complex spatio-temporal dynamic. When embedded into a focal-plane processing chip, such a model allows for online parallel filtering of the captured image; the outcome of such processing can be used to develop control feedback actions to adapt the response of photoreceptors to local image features. Beyond simple resistive grid filtering, it is possible to program other spatio-temporal processing operators into the model core, such as nonlinear and anisotropic diffusion, among others. This paper presents analog and mixed-signal very large-scale integration building blocks to implement this model, and illustrates their operation through experimental results taken from a prototype chip fabricated in a 0.5-ÎŒm CMOS technology.European Union IST 2001 38097Ministerio de Ciencia y TecnologĂ­a TIC 2003 09817 C02 01Office of Naval Research (USA) N00014021088

    A Bio-Inspired Two-Layer Mixed-Signal Flexible Programmable Chip for Early Vision

    Get PDF
    A bio-inspired model for an analog programmable array processor (APAP), based on studies on the vertebrate retina, has permitted the realization of complex programmable spatio-temporal dynamics in VLSI. This model mimics the way in which images are processed in the visual pathway, what renders a feasible alternative for the implementation of early vision tasks in standard technologies. A prototype chip has been designed and fabricated in 0.5 ÎŒm CMOS. It renders a computing power per silicon area and power consumption that is amongst the highest reported for a single chip. The details of the bio-inspired network model, the analog building block design challenges and trade-offs and some functional tests results are presented in this paper.Office of Naval Research (USA) N-000140210884European Commission IST-1999-19007Ministerio de Ciencia y TecnologĂ­a TIC1999-082

    The Electronic States of Two Oppositely doped Mott Insulators Bilayers

    Full text link
    We study the effect of Coulomb interaction between two oppositely doped low-dimensional tJ model systems. We exactly show that, in the one-dimensional case, an arbitrarily weak interaction leads to the formation of charge neutral electron-hole pairs. We then use two different mean-field theories to address the two-dimensional case, where inter-layer excitons also form and condense. We propose that this results in new features which have no analog in single layers, such as the emergence of an insulating spin liquid phase. Our simple bilayer model might have relevance to the physics of doped Mott insulator interfaces and of the new four layer Ba2CaCu4O8 compound.Comment: 4 pages, 1 figur

    Building up low-complexity spectrally-efficient Terabit superchannels by receiver-side duobinary shaping

    Get PDF
    Recently, an increasing interest has been put on spectrally-efficient multi-carrier superchannels for beyond 100G. Apart from orthogonal frequency-division multiplexing (OFDM) and Nyquist wavelength-division multiplexing (WDM), another low-complexity WDM approach based on transmitter-side pre-filtering and receiver-side duobinary shaping is proposed to build up multi-carrier superchannels. This approach is referred to as receiver-side duobinary-shaped WDM (RS-DBS-WDM). Generation and transmission of a 1.232-Tbit/s 11-carrier superchannel is experimentally demonstrated. The superchannel signal can be well fit inside the passband of multiple 300-GHz reconfigurable optical add and drop multiplexers (ROADMs). In the superchannel scenario, the proposed RS-DBS-WDM is qualitatively compared with OFDM and Nyquist-WDM in terms of implementation complexity. In sum, the proposed RS-DBS-WDM approach features high transceiver analog-bandwidth efficiency, high spectral-efficiency, the absence of specific spectral manipulation, compatibility with conventional WDM technologies and coherent detection algorithms, and comparable implementation penalty
    • 

    corecore