9,063 research outputs found

    Efficient Proactive Caching for Supporting Seamless Mobility

    Full text link
    We present a distributed proactive caching approach that exploits user mobility information to decide where to proactively cache data to support seamless mobility, while efficiently utilizing cache storage using a congestion pricing scheme. The proposed approach is applicable to the case where objects have different sizes and to a two-level cache hierarchy, for both of which the proactive caching problem is hard. Additionally, our modeling framework considers the case where the delay is independent of the requested data object size and the case where the delay is a function of the object size. Our evaluation results show how various system parameters influence the delay gains of the proposed approach, which achieves robust and good performance relative to an oracle and an optimal scheme for a flat cache structure.Comment: 10 pages, 9 figure

    Dataplane Specialization for High-performance OpenFlow Software Switching

    Get PDF
    OpenFlow is an amazingly expressive dataplane program- ming language, but this expressiveness comes at a severe performance price as switches must do excessive packet clas- sification in the fast path. The prevalent OpenFlow software switch architecture is therefore built on flow caching, but this imposes intricate limitations on the workloads that can be supported efficiently and may even open the door to mali- cious cache overflow attacks. In this paper we argue that in- stead of enforcing the same universal flow cache semantics to all OpenFlow applications and optimize for the common case, a switch should rather automatically specialize its dat- aplane piecemeal with respect to the configured workload. We introduce ES WITCH , a novel switch architecture that uses on-the-fly template-based code generation to compile any OpenFlow pipeline into efficient machine code, which can then be readily used as fast path. We present a proof- of-concept prototype and we demonstrate on illustrative use cases that ES WITCH yields a simpler architecture, superior packet processing speed, improved latency and CPU scala- bility, and predictable performance. Our prototype can eas- ily scale beyond 100 Gbps on a single Intel blade even with complex OpenFlow pipelines

    Temporal Locality in Today's Content Caching: Why it Matters and How to Model it

    Get PDF
    The dimensioning of caching systems represents a difficult task in the design of infrastructures for content distribution in the current Internet. This paper addresses the problem of defining a realistic arrival process for the content requests generated by users, due its critical importance for both analytical and simulative evaluations of the performance of caching systems. First, with the aid of YouTube traces collected inside operational residential networks, we identify the characteristics of real traffic that need to be considered or can be safely neglected in order to accurately predict the performance of a cache. Second, we propose a new parsimonious traffic model, named the Shot Noise Model (SNM), that enables users to natively capture the dynamics of content popularity, whilst still being sufficiently simple to be employed effectively for both analytical and scalable simulative studies of caching systems. Finally, our results show that the SNM presents a much better solution to account for the temporal locality observed in real traffic compared to existing approaches.Comment: 7 pages, 7 figures, Accepted for publication in ACM Computer Communication Revie

    A schema-based P2P network to enable publish-subscribe for multimedia content in open hypermedia systems

    No full text
    Open Hypermedia Systems (OHS) aim to provide efficient dissemination, adaptation and integration of hyperlinked multimedia resources. Content available in Peer-to-Peer (P2P) networks could add significant value to OHS provided that challenges for efficient discovery and prompt delivery of rich and up-to-date content are successfully addressed. This paper proposes an architecture that enables the operation of OHS over a P2P overlay network of OHS servers based on semantic annotation of (a) peer OHS servers and of (b) multimedia resources that can be obtained through the link services of the OHS. The architecture provides efficient resource discovery. Semantic query-based subscriptions over this P2P network can enable access to up-to-date content, while caching at certain peers enables prompt delivery of multimedia content. Advanced query resolution techniques are employed to match different parts of subscription queries (subqueries). These subscriptions can be shared among different interested peers, thus increasing the efficiency of multimedia content dissemination

    GIS in the cloud: implementing a web map service on Google App Engine

    Get PDF
    Many producers of geographic information are now disseminating their data using open web service protocols, notably those published by the Open Geospatial Consortium. There are many challenges inherent in running robust and reliable services at reasonable cost. Cloud computing provides a new kind of scalable infrastructure that could address many of these challenges. In this study we implement a Web Map Service for raster imagery within the Google App Engine environment. We discuss the challenges of developing GIS applications within this framework and the performance characteristics of the implementation. Results show that the application scales well to multiple simultaneous users and performance will be adequate for many applications, although concerns remain over issues such as latency spikes. We discuss the feasibility of implementing services within the free usage quotas of Google App Engine and the possibility of extending the approaches in this paper to other GIS applications
    • …
    corecore