
GIS in the cloud: implementing a Web Map Service on

Google App Engine
J.D. Blower

Reading e-Science Centre,
University of Reading,

RG6 6AL, United Kingdom
+44 118 378 5213

j.d.blower@reading.ac.uk

ABSTRACT
Many producers of geographic information are now disseminating

their data using open web service protocols, notably those

published by the Open Geospatial Consortium. There are many
challenges inherent in running robust and reliable services at

reasonable cost. Cloud computing provides a new kind of

scalable infrastructure that could address many of these
challenges. In this study we implement a Web Map Service for

raster imagery within the Google App Engine environment. We

discuss the challenges of developing GIS applications within this
framework and the performance characteristics of the

implementation. Results show that the application scales well to

multiple simultaneous users and performance will be adequate for
many applications, although concerns remain over issues such as

latency spikes. We discuss the feasibility of implementing

services within the free usage quotas of Google App Engine and
the possibility of extending the approaches in this paper to other

GIS applications.

Categories and Subject Descriptors
C.4 [Performance of systems] – Performance attributes;
Reliability, availability and serviceability

H.2.8 [Database management]: Database applications – Spatial
databases and GIS

H.3.5 [Information Storage and Retrieval]: On-line Information
Services – Web-based services

General Terms
Experimentation, Performance, Reliability

Keywords
Geographic Information Systems, Open Geospatial Consortium,

Service-Oriented Architecture, Web Map Service, raster, cloud
computing, scalability

1. INTRODUCTION
The use of service-oriented architectures in Geographic

Information Systems (GIS) is becoming increasingly widespread.
This approach helps to hide the technical details of the datasets in

question by exposing them through standard, implementation-

neutral web interfaces, potentially making them available to wider
audiences. The interface specifications of the Open Geospatial

Consortium (OGC) are the focus of much current activity in this

area ([2], http://inspire.jrc.ec.europa.eu/). Of these specifications,
the Web Map Service (WMS [4]) is currently the most widely

employed (e.g. [1], [5], [6]). WMS servers serve custom-

generated georeferenced images that can be precisely overlain on
top of other images in a GIS.

Achieving high levels of reliability and performance in such

systems is challenging: such services are often processor- and
disk-intensive and many of the smaller data providers (including

university research groups) do not have the capability to run

highly-available server infrastructures of this nature. One
common way in which to increase the performance of Web Map

Services is to pre-generate imagery, limiting the possible

geographic extents of the images to a finite set of tiles [5] which
are then served as static images. This reduces the flexibility of a

“full WMS” to produce a “tiled WMS”, which reduces server load

and increases scalability.

The recent emergence of cloud computing brings new possibilities

in service deployment. Services can be deployed in environments

that can be made to scale up or down as required, with the service
provider only being charged for actual usage. The task of running

the hardware itself is outsourced, allowing service providers to

concentrate on the software. The Google App Engine (GAE)
different from many cloud environments

(http://tinyurl.com/dlbllz). Instead of providing a virtualized

operating system into which any software can be installed, GAE
provides a custom hosting environment, for which applications

have to be specially developed. Once an application is deployed

in GAE, many concerns of scalability are handled automatically
by the infrastructure: new service instances are dynamically

provisioned as demanded by the current load. Furthermore, there

is no charge for using this environment, provided that an
application does not exceed certain quotas (discussed below),

although service providers can expand these quotas by enabling

billing. The low cost and automated scalability make GAE an
attractive target for investigation.

In this study, we take some first steps towards evaluating the

suitability of GAE for hosting GIS services by implementing a

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

COM.Geo 2010, June 21–23, 2010, Washington, DC, USA.

Copyright 2010 ACM: 978-1-4503-0031-5…$10.00.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Central Archive at the University of Reading

https://core.ac.uk/display/9441?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Web Map Service in the GAE environment. Section 2 discusses

the requirements of this system, section 3 discusses the

development of the software itself, section 4 evaluates the
performance of the resulting system, and finally section 5 draws

conclusions about the suitability of GAE for this and other GIS

applications.

2. REQUIREMENTS
The Reading e-Science Centre (http://www.resc.rdg.ac.uk) hosts a
Web Map Service for environmental data, which provides visual

access to many raster datasets, particularly the outputs of

numerical simulations of the ocean and climate. Most users
access the WMS through a custom-built web client known as

Godiva2 [1], which displays the data overlain on top of a

selection of background maps that provide context. We have
found it very difficult to find a freely-available third-party service

of these background maps that is sufficiently reliable for our

needs. Therefore this study was primarily designed to meet our
immediate needs of implementing a reliable and performant

background map service, as well as evaluating the potential of

GAE to fulfil more sophisticated requirements.

For this application, we need a WMS that can serve imagery in a

variety of coordinate systems, particularly WGS:84 latitude-

longitude and north and south polar stereographic. Other
coordinate systems will likely be required in future. The Godiva2

client typically accesses background maps through tiled map

services, although a full WMS is also required for certain
applications. Low latency is an important requirement to support

interactive browsing of images on a draggable, zoomable dynamic

map component.

The most common background map requested by clients is the

NASA Blue Marble Second Generation composite satellite image,

which is available at multiple resolutions. For the Godiva2 site,
the 5400x2700 JPEG image is adequate for our needs and this is

the source image we use in this study.

We targeted the Java environment within GAE (a Python
environment is also available), with the intention of re-using many

existing investments in Java GIS technology, including our own

ncWMS software (http://ncwms.sf.net). We aimed to use only
open-source software and to strive as far as possible to remain

within the free usage quotas of Google App Engine, in order to

maximize the sustainability and reusability of our work.

3. DEVELOPMENT

3.1 Limitations of the GAE environment
The GAE software is somewhat restricted in order to allow for the

automatic expansion of capacity by provisioning new service

instances, which may be distributed across many physical servers.
For the purposes of this study, the most important restrictions are:

• No files may be written to the server’s local filesystem. All

data must be written to Google’s persistent store, or to the
memory cache (“memcache”), both of which are distributed

over many servers to provide high capacity.

• Many important classes in the standard Java Development

Kit are not available, including those in the javax.imageio

package and most of the contents of java.awt. These
packages contain much of the code that would usually be

used for image manipulation.

• Applications may not spawn background threads. This

means that the present versions of many Java GIS libraries,

including Geotoolkit (http://www.geotoolkit.org), cannot be
run.

• The amount of random-access memory available to each
service instance is low. Precise figures are not available, but

tests suggest that the current limit is around 100MB.

Applications must therefore make very sparing use of RAM.

These restrictions aside, GAE provides an environment close to
that of a standard servlet container. Capacity is restricted by

per-day and per-minute quotas, whose impact upon this

application is discussed in Section 4 below.

3.2 The implementation
The above restrictions mean that implementing a full WMS within
Google App Engine is far from trivial. A full discussion of the

implementation is beyond the scope of this paper, but the source

code and more discussion of the details of the implementation are
available from http://code.google.com/p/gae-wms/.

When a WMS request for an image is received, the server must

work out the geographic coordinates of each pixel in the requested
image. These coordinates are then mapped onto corresponding

nearest-neighbour pixels in the source image. These pixels are

then extracted and assembled to produce the final image. The
key challenge in this implementation was to implement an

efficient means for extracting pixels from the source image.

Given that the javax.imageio package is not available in GAE, and
that we were unable to find a suitable replacement open-source

Java JPEG-reading library that runs in GAE, the source image was

uncompressed into raw ARGB (4-byte integer) pixels before
being uploaded to GAE.

The resulting uncompressed raw pixel array is 58.3 MB in size,

which exceeds GAE’s limit of 10 MB per file. By splitting the
pixel array up into chunks of 500x500 pixels (1 MB in size), the

image data could be uploaded to GAE. We experimented with

storing these chunks in the distributed persistent store and the
memcache system. However, we found that during even moderate

usage in the test cases (section 4 below) the application would

exceed its free per-minute quotas for reading from these data
stores. Therefore we found that the best approach was to store the

chunks in the application’s local filesystem, which is not

associated with a quota for data reading. A data abstraction layer
was then implemented that treats the mosaic of image chunks as

one large virtual image. For image output, we located an open-

source PNG-writing library that we adapted for GAE
(http://catcode.com/pngencoder/). The GAE image transform

service was used to convert PNG images to JPEGs.

Because new service instances can be provisioned automatically
by the GAE infrastructure, it is beneficial if the instances have a

short startup time. Therefore we found it advisable to avoid the

use of large web frameworks such as Spring.

4. TESTING
We wished to evaluate the performance of the above
implementation under different conditions of server load. Since

we have no control over the behaviour of the GAE environment,

the results of such tests may not be precisely reproducible;
however, the relative performances of different server

configurations are instructive, as are some general features of the

system.

4.1 Methodology
We used Apache JMeter (http://jakarta.apache.org/jmeter/) to set

up and run a number of test scripts, each of which involved a
single client machine making repeated requests to the server for

images. Each test started with a single thread, ramping up linearly

over at least 30 seconds to a maximum number of threads, which
were then sustained for at least a further 30 seconds. Each thread

looped repeatedly through a set of 42 image requests in random

order. Each image was of size 256x256 pixels, representing three
“zoom levels” in WGS:84 latitude-longitude coordinates (the first

zoom level contains two images, one covering each hemisphere;

the second level splits each of these images into four, and so
forth).

We tested three different server configurations. In the “fully-

dynamic” configuration, all images were generated dynamically
from the source data, with no caching taking place within the

application. In the “self-caching” configuration, the server was

set up to hold all generated images in the GAE memcache system
as JPEGs or PNGs. Subsequent identical requests receive the

image directly from the memcache (tiling clients will naturally

produce a number of identical requests). Finally, in the “static
files” configuration, the client was set up to request a finite set of

static image files from the server, bypassing the WMS interface.

(This last configuration is similar to that of a TileCache server,
http://tilecache.org/.)

In each of the three test suites, a number of test scripts were run,

with different maximum numbers of threads. The throughput (the
number of images received by the client from the server per

second) was calculated by calculating the mean and standard

deviations of a large number of “instantaneous” throughputs, each
of which was estimated by calculating the time required to receive

a certain number of images (typically 10) in a sliding window

over the dataset. Care was taken to verify that the figures for
throughput were representative and not affected by transients.

The average latency in each case (the time a client observes

between a request being made and the first response) was
calculated by averaging over the recorded latencies in the same

time window as was used to calculate the throughput.

4.2 Results
Figure 1 shows the maximum sustained throughput for successful

requests versus client thread count in each of the three test suites.
The error bars (one standard deviation) illustrate the variability in

the measured throughput. In the “static files” configuration, the

server is capable of serving over 500 requests per second; this is
the limit of GAE’s default capability under free usage. With 50 or

more client threads, many requests therefore failed with an HTTP

response code of 503 (“Service Not Available”), which we
interpret as GAE blocking the test client’s requests, perhaps

defending against a potential denial-of-service attack.

The “self-caching” configuration was capable of serving around
200 requests per second, although we again saw many requests

fail with “503” error codes with 100 client threads. In this case,

we may be exceeding a different quota; by default GAE places a
limit of 30 simultaneous dynamic requests within the limits of free

usage.

The fully-dynamic configuration achieved around 25 requests per

second with 20 client threads, but requests again failed with “503”

error codes with over 10 client threads. The origin of these errors
is less clear, since the observed latencies in this case were not

sufficient to bring the server to a limit of 30 simultaneous

dynamic requests.

A similar, but slightly lower, level of performance was recorded

when requesting images in polar stereographic projection. The

slight decrease in performance is due to the need to reproject the
data from the original WGS:84 latitude-longitude system.

Figure 1: Maximum sustained throughput (images served per

second) of the server in static files configuration (solid line),

self-caching configuration (dashed line) and fully-dynamic

configuration (dotted line). Error bars represent one standard

deviation from the mean. In each case the trials were stopped

when a large error rate was observed.

Figure 2 shows the average latency for successful requests during

the same time period used to calculate the maximum sustained
throughput in each case. In each of the three configurations, the

increase in latency with increasing numbers of client threads is

small compared with its variability. These simple averages do not
capture the whole story. The first request in a test script typically

causes a new virtual machine to be provisioned; such requests

(known as “loading requests”) are associated with high latencies
(a second or more). Other spikes in latency (of up to four

seconds) were observed, not all of which were associated with

loading requests.

The latency of the static-tiles configuration (around 180 ms)

represents an approximate minimum latency. Some proportion of

this will be network latency (the client test machine was in the
United Kingdom; the geographical locations of the GAE servers

are unknown). The typical time to retrieve an image from the

memcache in the “self-caching” configuration was 15-20 ms,
which accounts for some, but not all, of the difference between

the “self-caching” and “static files” configuration; the remaining

~50 ms can be considered as the overhead of a dynamic request.
The higher latency of the fully-dynamic configuration is mainly

associated with the extraction of data from the source files.

Figure 2: Average latency of the server in the three

configurations. Key as in Figure 1.

Examination of the total resource usage following the tests

revealed that the resource that is likely to be exhausted first (in

terms of the GAE free-usage quota) is the outgoing bandwidth
from the server. Currently this quota is 1GB per day. The

average size of each JPEG image in this study was around 10kB,
meaning that the server can serve around 100,000 JPEG images

per day at no cost. Equivalent PNG images had an average size of

nearly 100kB, giving a limit of around 10,000 PNG images per
day.

5. DISCUSSION
This study has demonstrated that it is possible to implement a full
Web Map Service for raster data within the Google App Engine

environments. The system developed is sufficiently scalable and

performant to meet the needs of many applications, including the
particular application discussed in section 2. A fully-dynamic

WMS can serve 10 simultaneous clients with an average latency

of ~500 ms for 256x256 images. The same WMS, with self-
caching enabled, could serve tiles to 50 simultaneous clients at

latencies of ~300 ms. Implementing a static tile cache (in which
all images are pre-generated) is very easy and can serve images at

a rate of several hundred per second. A number of outstanding

concerns remain, which may limit the potential of this system to
be used for certain applications:

The cause of the “503 Service Not Available” errors. These

errors appear to occur when the application exceeds certain free-
usage quotas under heavy load. It is possible that the problem

occurs due to the use of a single test client: perhaps GAE

automatically blocks a client that is making large numbers of
requests. Testing the server with many distributed clients would

test this hypothesis and would also be a more realistic simulation

of typical server load.

Loading requests and other latency spikes. The high latencies

associated with loading requests (discussed in section 4.2) have

strong implications for lightly-used services. In such situations,
most requests may occur after periods of quiescence and therefore

become loading requests with high latencies. Other latency spikes

(which may be due to temporary server contention) also act to

degrade a user’s experience, even though average latencies are
acceptably low for many applications.

Serving many source images. The chosen method for storing the

source image (as binary chunks in the file system; see section 3.2
above) means that a single application cannot serve large numbers

of high-resolution images within the free quotas (there is currently

a per-application limit of 150MB of static files). This could be
mitigated by storing the source images as compressed JPEGs (or

other formats), at a cost of increased CPU usage and latency (and

perhaps RAM usage) because of the need for decompression.

The question of access control to the service is beyond the scope

of this study but some level of access control may be necessary to

prevent clients from accidentally or maliciously consuming excess
resource. There is currently no widely-agreed mechanism for

controlling access to Web Map Services, and implementing such

controls would break compatibility with most existing client tools.

Extending this WMS solution to serve vector data efficiently

would be challenging. Many existing mature software systems

(e.g. GeoServer, MapServer, PostGIS) have been developed over
many years to address this problem and they would not generally

be easy to port to the GAE infrastructure because of the

limitations discussed in section 3.1 above. Perhaps the greatest
challenge would be to implement an efficient spatial search

algorithm within the GAE persistent data store.

6. ACKNOWLEDGMENTS
This work was supported by the UK NERC Reading e-Science

Centre contract and by the EU MyOcean project. The work of the
NASA Earth Observatory in providing the Blue Marble Imagery

is gratefully acknowledged. The author is grateful to Hugo Mills

for useful discussions on cloud computing.

7. REFERENCES
[1] Blower, J.D., Haines, K., Santokhee, A., and Liu, C. 2009.

Godiva2: Interactive visualization of environmental data on
the web. Phil. Trans. Roy. Soc. A, 367, 1035-9

[2] Granell, C., Dıaz, L., Gould, M. 2010. Service-oriented

applications for environmental models: Reusable geospatial
services. Environmental Modelling and Software, 25, 182-

198

[3] OpenGIS Web Map Service Interface Specification version

1.3.0, Open Geospatial Consortium document OGC 06-042

[4] OpenGIS Web Map Tiling Service Candidate

Implementation standard, Open Geospatial Consortium

document OGC 07-057r6

[5] Panagos, P., Van Liedekerke, M., Montanarella, L., Jones,

R.J.A. 2008. Soil organic carbon content indicators and web

mapping applications. Environmental Modelling & Software,
23, 1207-9

[6] Zhang, C., Li, W. 2005. The Roles of Web Feature and Web

Map Services in Real-time Geospatial Data Sharing for
Time-critical applications. Cartography and Geographic

Information Science 32, 4 (Oct. 2005), 269-83

