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ABSTRACT 
Many producers of geographic information are now disseminating 

their data using open web service protocols, notably those 

published by the Open Geospatial Consortium.  There are many 
challenges inherent in running robust and reliable services at 

reasonable cost.  Cloud computing provides a new kind of 

scalable infrastructure that could address many of these 
challenges.  In this study we implement a Web Map Service for 

raster imagery within the Google App Engine environment.  We 

discuss the challenges of developing GIS applications within this 
framework and the performance characteristics of the 

implementation. Results show that the application scales well to 

multiple simultaneous users and performance will be adequate for 
many applications, although concerns remain over issues such as 

latency spikes.  We discuss the feasibility of implementing 

services within the free usage quotas of Google App Engine and 
the possibility of extending the approaches in this paper to other 

GIS applications. 

Categories and Subject Descriptors 
C.4 [Performance of systems] – Performance attributes; 
Reliability, availability and serviceability 

H.2.8 [Database management]: Database applications – Spatial 
databases and GIS 

H.3.5 [Information Storage and Retrieval]: On-line Information 
Services – Web-based services 

General Terms 
Experimentation, Performance, Reliability 

Keywords 
Geographic Information Systems, Open Geospatial Consortium, 

Service-Oriented Architecture, Web Map Service, raster, cloud 
computing, scalability 

1. INTRODUCTION 
The use of service-oriented architectures in Geographic 

Information Systems (GIS) is becoming increasingly widespread.  
This approach helps to hide the technical details of the datasets in 

question by exposing them through standard, implementation-

neutral web interfaces, potentially making them available to wider 
audiences.  The interface specifications of the Open Geospatial 

Consortium (OGC) are the focus of much current activity in this 

area ([2], http://inspire.jrc.ec.europa.eu/).  Of these specifications, 
the Web Map Service (WMS [4]) is currently the most widely 

employed (e.g. [1], [5], [6]).  WMS servers serve custom-

generated georeferenced images that can be precisely overlain on 
top of other images in a GIS. 

Achieving high levels of reliability and performance in such 

systems is challenging: such services are often processor- and 
disk-intensive and many of the smaller data providers (including 

university research groups) do not have the capability to run 

highly-available server infrastructures of this nature.  One 
common way in which to increase the performance of Web Map 

Services is to pre-generate imagery, limiting the possible 

geographic extents of the images to a finite set of tiles [5] which 
are then served as static images.  This reduces the flexibility of a 

“full WMS” to produce a “tiled WMS”, which reduces server load 

and increases scalability. 

The recent emergence of cloud computing brings new possibilities 

in service deployment.  Services can be deployed in environments 

that can be made to scale up or down as required, with the service 
provider only being charged for actual usage.  The task of running 

the hardware itself is outsourced, allowing service providers to 

concentrate on the software.  The Google App Engine (GAE) 
different from many cloud environments 

(http://tinyurl.com/dlbllz).  Instead of providing a virtualized 

operating system into which any software can be installed, GAE 
provides a custom hosting environment, for which applications 

have to be specially developed.  Once an application is deployed 

in GAE, many concerns of scalability are handled automatically 
by the infrastructure: new service instances are dynamically 

provisioned as demanded by the current load.  Furthermore, there 

is no charge for using this environment, provided that an 
application does not exceed certain quotas (discussed below), 

although service providers can expand these quotas by enabling 

billing.  The low cost and automated scalability make GAE an 
attractive target for investigation. 

In this study, we take some first steps towards evaluating the 

suitability of GAE for hosting GIS services by implementing a 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. To copy 

otherwise, or republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee. 

COM.Geo 2010, June 21–23, 2010, Washington, DC, USA. 

Copyright 2010 ACM: 978-1-4503-0031-5…$10.00. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Central Archive at the University of Reading

https://core.ac.uk/display/9441?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Web Map Service in the GAE environment.  Section 2 discusses 

the requirements of this system, section 3 discusses the 

development of the software itself, section 4 evaluates the 
performance of the resulting system, and finally section 5 draws 

conclusions about the suitability of GAE for this and other GIS 

applications. 

2. REQUIREMENTS 
The Reading e-Science Centre (http://www.resc.rdg.ac.uk) hosts a 
Web Map Service for environmental data, which provides visual 

access to many raster datasets, particularly the outputs of 

numerical simulations of the ocean and climate.  Most users 
access the WMS through a custom-built web client known as 

Godiva2 [1], which displays the data overlain on top of a 

selection of background maps that provide context.  We have 
found it very difficult to find a freely-available third-party service 

of these background maps that is sufficiently reliable for our 

needs.  Therefore this study was primarily designed to meet our 
immediate needs of implementing a reliable and performant 

background map service, as well as evaluating the potential of 

GAE to fulfil more sophisticated requirements. 

For this application, we need a WMS that can serve imagery in a 

variety of coordinate systems, particularly WGS:84 latitude-

longitude and north and south polar stereographic.  Other 
coordinate systems will likely be required in future.  The Godiva2 

client typically accesses background maps through tiled map 

services, although a full WMS is also required for certain 
applications.  Low latency is an important requirement to support 

interactive browsing of images on a draggable, zoomable dynamic 

map component. 

The most common background map requested by clients is the 

NASA Blue Marble Second Generation composite satellite image, 

which is available at multiple resolutions.  For the Godiva2 site, 
the 5400x2700 JPEG image is adequate for our needs and this is 

the source image we use in this study. 

We targeted the Java environment within GAE (a Python 
environment is also available), with the intention of re-using many 

existing investments in Java GIS technology, including our own 

ncWMS software (http://ncwms.sf.net).  We aimed to use only 
open-source software and to strive as far as possible to remain 

within the free usage quotas of Google App Engine, in order to 

maximize the sustainability and reusability of our work. 

3. DEVELOPMENT 

3.1 Limitations of the GAE environment 
The GAE software is somewhat restricted in order to allow for the 

automatic expansion of capacity by provisioning new service 

instances, which may be distributed across many physical servers.  
For the purposes of this study, the most important restrictions are: 

• No files may be written to the server’s local filesystem.  All 

data must be written to Google’s persistent store, or to the 
memory cache (“memcache”), both of which are distributed 

over many servers to provide high capacity. 

• Many important classes in the standard Java Development 

Kit are not available, including those in the javax.imageio 

package and most of the contents of java.awt.  These 
packages contain much of the code that would usually be 

used for image manipulation. 

• Applications may not spawn background threads.  This 

means that the present versions of many Java GIS libraries, 

including Geotoolkit (http://www.geotoolkit.org), cannot be 
run. 

• The amount of random-access memory available to each 
service instance is low.  Precise figures are not available, but 

tests suggest that the current limit is around 100MB.  

Applications must therefore make very sparing use of RAM. 

These restrictions aside, GAE provides an environment close to 
that of a standard servlet container.  Capacity is restricted by 

per-day and per-minute quotas, whose impact upon this 

application is discussed in Section 4 below. 

3.2 The implementation 
The above restrictions mean that implementing a full WMS within 
Google App Engine is far from trivial.  A full discussion of the 

implementation is beyond the scope of this paper, but the source 

code and more discussion of the details of the implementation are 
available from http://code.google.com/p/gae-wms/. 

When a WMS request for an image is received, the server must 

work out the geographic coordinates of each pixel in the requested 
image.  These coordinates are then mapped onto corresponding 

nearest-neighbour pixels in the source image.  These pixels are 

then extracted and assembled to produce the final image.   The 
key challenge in this implementation was to implement an 

efficient means for extracting pixels from the source image.  

Given that the javax.imageio package is not available in GAE, and 
that we were unable to find a suitable replacement open-source 

Java JPEG-reading library that runs in GAE, the source image was 

uncompressed into raw ARGB (4-byte integer) pixels before 
being uploaded to GAE. 

The resulting uncompressed raw pixel array is 58.3 MB in size, 

which exceeds GAE’s limit of 10 MB per file.  By splitting the 
pixel array up into chunks of 500x500 pixels (1 MB in size), the 

image data could be uploaded to GAE.  We experimented with 

storing these chunks in the distributed persistent store and the 
memcache system.  However, we found that during even moderate 

usage in the test cases (section 4 below) the application would 

exceed its free per-minute quotas for reading from these data 
stores.  Therefore we found that the best approach was to store the 

chunks in the application’s local filesystem, which is not 

associated with a quota for data reading.  A data abstraction layer 
was then implemented that treats the mosaic of image chunks as 

one large virtual image.  For image output, we located an open-

source PNG-writing library that we adapted for GAE 
(http://catcode.com/pngencoder/).  The GAE image transform 

service was used to convert PNG images to JPEGs. 

Because new service instances can be provisioned automatically 
by the GAE infrastructure, it is beneficial if the instances have a 

short startup time.  Therefore we found it advisable to avoid the 

use of large web frameworks such as Spring. 

4. TESTING 
We wished to evaluate the performance of the above 
implementation under different conditions of server load.  Since 

we have no control over the behaviour of the GAE environment, 

the results of such tests may not be precisely reproducible; 
however, the relative performances of different server 



configurations are instructive, as are some general features of the 

system. 

4.1 Methodology 
We used Apache JMeter (http://jakarta.apache.org/jmeter/) to set 

up and run a number of test scripts, each of which involved a 
single client machine making repeated requests to the server for 

images.  Each test started with a single thread, ramping up linearly 

over at least 30 seconds to a maximum number of threads, which 
were then sustained for at least a further 30 seconds.  Each thread 

looped repeatedly through a set of 42 image requests in random 

order.  Each image was of size 256x256 pixels, representing three 
“zoom levels” in WGS:84 latitude-longitude coordinates (the first 

zoom level contains two images, one covering each hemisphere; 

the second level splits each of these images into four, and so 
forth). 

We tested three different server configurations.  In the “fully-

dynamic” configuration, all images were generated dynamically 
from the source data, with no caching taking place within the 

application.  In the “self-caching” configuration, the server was 

set up to hold all generated images in the GAE memcache system 
as JPEGs or PNGs.  Subsequent identical requests receive the 

image directly from the memcache (tiling clients will naturally 

produce a number of identical requests).  Finally, in the “static 
files” configuration, the client was set up to request a finite set of 

static image files from the server, bypassing the WMS interface.  

(This last configuration is similar to that of a TileCache server, 
http://tilecache.org/.) 

In each of the three test suites, a number of test scripts were run, 

with different maximum numbers of threads.  The throughput (the 
number of images received by the client from the server per 

second) was calculated by calculating the mean and standard 

deviations of a large number of “instantaneous” throughputs, each 
of which was estimated by calculating the time required to receive 

a certain number of images (typically 10) in a sliding window 

over the dataset.  Care was taken to verify that the figures for 
throughput were representative and not affected by transients.  

The average latency in each case (the time a client observes 

between a request being made and the first response) was 
calculated by averaging over the recorded latencies in the same 

time window as was used to calculate the throughput. 

4.2 Results 
Figure 1 shows the maximum sustained throughput for successful 

requests versus client thread count in each of the three test suites.  
The error bars (one standard deviation) illustrate the variability in 

the measured throughput.  In the “static files” configuration, the 

server is capable of serving over 500 requests per second; this is 
the limit of GAE’s default capability under free usage.  With 50 or 

more client threads, many requests therefore failed with an HTTP 

response code of 503 (“Service Not Available”), which we 
interpret as GAE blocking the test client’s requests, perhaps 

defending against a potential denial-of-service attack. 

The “self-caching” configuration was capable of serving around 
200 requests per second, although we again saw many requests 

fail with “503” error codes with 100 client threads.  In this case, 

we may be exceeding a different quota; by default GAE places a 
limit of 30 simultaneous dynamic requests within the limits of free 

usage. 

The fully-dynamic configuration achieved around 25 requests per 

second with 20 client threads, but requests again failed with “503” 

error codes with over 10 client threads.  The origin of these errors 
is less clear, since the observed latencies in this case were not 

sufficient to bring the server to a limit of 30 simultaneous 

dynamic requests. 

A similar, but slightly lower, level of performance was recorded 

when requesting images in polar stereographic projection.  The 

slight decrease in performance is due to the need to reproject the 
data from the original WGS:84 latitude-longitude system. 

 

Figure 1: Maximum sustained throughput (images served per 

second) of the server in static files configuration (solid line), 

self-caching configuration (dashed line) and fully-dynamic 

configuration (dotted line).  Error bars represent one standard 

deviation from the mean.  In each case the trials were stopped 

when a large error rate was observed. 

Figure 2 shows the average latency for successful requests during 

the same time period used to calculate the maximum sustained 
throughput in each case.  In each of the three configurations, the 

increase in latency with increasing numbers of client threads is 

small compared with its variability.  These simple averages do not 
capture the whole story.  The first request in a test script typically 

causes a new virtual machine to be provisioned; such requests 

(known as “loading requests”) are associated with high latencies 
(a second or more).  Other spikes in latency (of up to four 

seconds) were observed, not all of which were associated with 

loading requests. 

The latency of the static-tiles configuration (around 180 ms) 

represents an approximate minimum latency.  Some proportion of 

this will be network latency (the client test machine was in the 
United Kingdom; the geographical locations of the GAE servers 

are unknown).  The typical time to retrieve an image from the 

memcache in the “self-caching” configuration was 15-20 ms, 
which accounts for some, but not all, of the difference between 

the “self-caching” and “static files” configuration; the remaining 

~50 ms can be considered as the overhead of a dynamic request.  
The higher latency of the fully-dynamic configuration is mainly 

associated with the extraction of data from the source files. 



 

Figure 2: Average latency of the server in the three 

configurations.  Key as in Figure 1. 

Examination of the total resource usage following the tests 

revealed that the resource that is likely to be exhausted first (in 

terms of the GAE free-usage quota) is the outgoing bandwidth 
from the server.  Currently this quota is 1GB per day.  The 

average size of each JPEG image in this study was around 10kB, 
meaning that the server can serve around 100,000 JPEG images 

per day at no cost.  Equivalent PNG images had an average size of 

nearly 100kB, giving a limit of around 10,000 PNG images per 
day. 

5. DISCUSSION 
This study has demonstrated that it is possible to implement a full 
Web Map Service for raster data within the Google App Engine 

environments.  The system developed is sufficiently scalable and 

performant to meet the needs of many applications, including the 
particular application discussed in section 2.  A fully-dynamic 

WMS can serve 10 simultaneous clients with an average latency 

of ~500 ms for 256x256 images.  The same WMS, with self-
caching enabled, could serve tiles to 50 simultaneous clients at 

latencies of ~300 ms.  Implementing a static tile cache (in which 
all images are pre-generated) is very easy and can serve images at 

a rate of several hundred per second.  A number of outstanding 

concerns remain, which may limit the potential of this system to 
be used for certain applications: 

The cause of the “503 Service Not Available” errors.  These 

errors appear to occur when the application exceeds certain free-
usage quotas under heavy load.  It is possible that the problem 

occurs due to the use of a single test client: perhaps GAE 

automatically blocks a client that is making large numbers of 
requests.  Testing the server with many distributed clients would 

test this hypothesis and would also be a more realistic simulation 

of typical server load. 

Loading requests and other latency spikes.  The high latencies 

associated with loading requests (discussed in section 4.2) have 

strong implications for lightly-used services.  In such situations, 
most requests may occur after periods of quiescence and therefore 

become loading requests with high latencies.  Other latency spikes 

(which may be due to temporary server contention) also act to 

degrade a user’s experience, even though average latencies are 
acceptably low for many applications. 

Serving many source images.  The chosen method for storing the 

source image (as binary chunks in the file system; see section 3.2 
above) means that a single application cannot serve large numbers 

of high-resolution images within the free quotas (there is currently 

a per-application limit of 150MB of static files).  This could be 
mitigated by storing the source images as compressed JPEGs (or 

other formats), at a cost of increased CPU usage and latency (and 

perhaps RAM usage) because of the need for decompression. 

The question of access control to the service is beyond the scope 

of this study but some level of access control may be necessary to 

prevent clients from accidentally or maliciously consuming excess 
resource.  There is currently no widely-agreed mechanism for 

controlling access to Web Map Services, and implementing such 

controls would break compatibility with most existing client tools. 

Extending this WMS solution to serve vector data efficiently 

would be challenging.  Many existing mature software systems 

(e.g. GeoServer, MapServer, PostGIS) have been developed over 
many years to address this problem and they would not generally 

be easy to port to the GAE infrastructure because of the 

limitations discussed in section 3.1 above.  Perhaps the greatest 
challenge would be to implement an efficient spatial search 

algorithm within the GAE persistent data store. 
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