1,688 research outputs found

    A Taxonomy for Congestion Control Algorithms in Vehicular Ad Hoc Networks

    Full text link
    One of the main criteria in Vehicular Ad hoc Networks (VANETs) that has attracted the researchers' consideration is congestion control. Accordingly, many algorithms have been proposed to alleviate the congestion problem, although it is hard to find an appropriate algorithm for applications and safety messages among them. Safety messages encompass beacons and event-driven messages. Delay and reliability are essential requirements for event-driven messages. In crowded networks where beacon messages are broadcasted at a high number of frequencies by many vehicles, the Control Channel (CCH), which used for beacons sending, will be easily congested. On the other hand, to guarantee the reliability and timely delivery of event-driven messages, having a congestion free control channel is a necessity. Thus, consideration of this study is given to find a solution for the congestion problem in VANETs by taking a comprehensive look at the existent congestion control algorithms. In addition, the taxonomy for congestion control algorithms in VANETs is presented based on three classes, namely, proactive, reactive and hybrid. Finally, we have found the criteria in which fulfill prerequisite of a good congestion control algorithm

    Computational Intelligence Inspired Data Delivery for Vehicle-to-Roadside Communications

    Get PDF
    We propose a vehicle-to-roadside communication protocol based on distributed clustering where a coalitional game approach is used to stimulate the vehicles to join a cluster, and a fuzzy logic algorithm is employed to generate stable clusters by considering multiple metrics of vehicle velocity, moving pattern, and signal qualities between vehicles. A reinforcement learning algorithm with game theory based reward allocation is employed to guide each vehicle to select the route that can maximize the whole network performance. The protocol is integrated with a multi-hop data delivery virtualization scheme that works on the top of the transport layer and provides high performance for multi-hop end-to-end data transmissions. We conduct realistic computer simulations to show the performance advantage of the protocol over other approaches

    CMD: A Multi-Channel Coordination Scheme for Emergency Message Dissemination in IEEE 1609.4

    Full text link
    In the IEEE 1609.4 legacy standard for multi-channel communications in vehicular ad hoc networks(VANETs), the control channel (CCH) is dedicated to broadcast safety messages while the service channels (SCH's) are dedicated to transmit infotainment service content. However, the SCH can be used as an alternative to transmit high priority safety messages in the event that they are invoked during the service channel interval (SCHI). This implies that there is a need to transmit safety messages across multiple available utilized channels to ensure that all vehicles receive the safety message. Transmission across multiple SCH's using the legacy IEEE 1609.4 requires multiple channel switching and therefore introduces further end-to-end delays. Given that safety messaging is a life critical application, it is important that optimal end-to-end delay performance is derived in multi-channel VANET scenarios to ensure reliable safety message dissemination. To tackle this challenge, three primary contributions are in this article: first, a channel coordinator selection approach based on the least average separation distance (LAD) to the vehicles that expect to tune to other SCH's and operates during the control channel interval (CCHI) is proposed. Second, a model to determine the optimal time intervals in which CMD operates during the CCHI is proposed. Third, a contention back-off mechanism for safety message transmission during the SCHI is proposed. Computer simulations and mathematical analysis show that CMD performs better than the legacy IEEE 1609.4 and a selected state-of-the-art multi-channel message dissemination schemes in terms of end-to-end delay and packet reception ratio.Comment: 15 pages, 10 figures, 7 table

    Benets of tight coupled architectures for the integration of GNSS receiver and Vanet transceiver

    Get PDF
    Vehicular adhoc networks (VANETs) are one emerging type of networks that will enable a broad range of applications such as public safety, traffic management, traveler information support and entertain ment. Whether wireless access may be asynchronous or synchronous (respectively as in the upcoming IEEE 8021.11p standard or in some alternative emerging solutions), a synchronization among nodes is required. Moreover, the information on position is needed to let vehicular services work and to correctly forward the messages. As a result, timing and positioning are a strong prerequisite of VANETs. Also the diffusion of enhanced GNSS Navigators paves the way to the integration between GNSS receivers and VANET transceiv ers. This position paper presents an analysis on potential benefits coming from a tightcoupling between the two: the dissertation is meant to show to what extent Intelligent Transportation System (ITS) services could benefit from the proposed architectur

    Infocast: A New Paradigm for Collaborative Content Distribution from Roadside Units to Vehicular Networks Using Rateless Codes

    Full text link
    In this paper, we address the problem of distributing a large amount of bulk data to a sparse vehicular network from roadside infostations, using efficient vehicle-to-vehicle collaboration. Due to the highly dynamic nature of the underlying vehicular network topology, we depart from architectures requiring centralized coordination, reliable MAC scheduling, or global network state knowledge, and instead adopt a distributed paradigm with simple protocols. In other words, we investigate the problem of reliable dissemination from multiple sources when each node in the network shares a limited amount of its resources for cooperating with others. By using \emph{rateless} coding at the Road Side Unit (RSU) and using vehicles as data carriers, we describe an efficient way to achieve reliable dissemination to all nodes (even disconnected clusters in the network). In the nutshell, we explore vehicles as mobile storage devices. We then develop a method to keep the density of the rateless codes packets as a function of distance from the RSU at the desired level set for the target decoding distance. We investigate various tradeoffs involving buffer size, maximum capacity, and the mobility parameter of the vehicles
    corecore