150,489 research outputs found

    Applying MAPP Algorithm for Cooperative Path Finding in Urban Environments

    Full text link
    The paper considers the problem of planning a set of non-conflict trajectories for the coalition of intelligent agents (mobile robots). Two divergent approaches, e.g. centralized and decentralized, are surveyed and analyzed. Decentralized planner - MAPP is described and applied to the task of finding trajectories for dozens UAVs performing nap-of-the-earth flight in urban environments. Results of the experimental studies provide an opportunity to claim that MAPP is a highly efficient planner for solving considered types of tasks

    Efficient Multi-Robot Coverage of a Known Environment

    Full text link
    This paper addresses the complete area coverage problem of a known environment by multiple-robots. Complete area coverage is the problem of moving an end-effector over all available space while avoiding existing obstacles. In such tasks, using multiple robots can increase the efficiency of the area coverage in terms of minimizing the operational time and increase the robustness in the face of robot attrition. Unfortunately, the problem of finding an optimal solution for such an area coverage problem with multiple robots is known to be NP-complete. In this paper we present two approximation heuristics for solving the multi-robot coverage problem. The first solution presented is a direct extension of an efficient single robot area coverage algorithm, based on an exact cellular decomposition. The second algorithm is a greedy approach that divides the area into equal regions and applies an efficient single-robot coverage algorithm to each region. We present experimental results for two algorithms. Results indicate that our approaches provide good coverage distribution between robots and minimize the workload per robot, meanwhile ensuring complete coverage of the area.Comment: In proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 201

    Any-Angle Pathfinding for Multiple Agents Based on SIPP Algorithm

    Full text link
    The problem of finding conflict-free trajectories for multiple agents of identical circular shape, operating in shared 2D workspace, is addressed in the paper and decoupled, e.g., prioritized, approach is used to solve this problem. Agents' workspace is tessellated into the square grid on which any-angle moves are allowed, e.g. each agent can move into an arbitrary direction as long as this move follows the straight line segment whose endpoints are tied to the distinct grid elements. A novel any-angle planner based on Safe Interval Path Planning (SIPP) algorithm is proposed to find trajectories for an agent moving amidst dynamic obstacles (other agents) on a grid. This algorithm is then used as part of a prioritized multi-agent planner AA-SIPP(m). On the theoretical, side we show that AA-SIPP(m) is complete under well-defined conditions. On the experimental side, in simulation tests with up to 200 agents involved, we show that our planner finds much better solutions in terms of cost (up to 20%) compared to the planners relying on cardinal moves only.Comment: Final version as submitted to ICAPS-2017 (main track); 8 pages; 4 figures; 1 algorithm; 2 table
    • …
    corecore