158 research outputs found

    Energy-Efficient Resource Allocation Optimization for Multimedia Heterogeneous Cloud Radio Access Networks

    Full text link
    The heterogeneous cloud radio access network (H-CRAN) is a promising paradigm which incorporates the cloud computing into heterogeneous networks (HetNets), thereby taking full advantage of cloud radio access networks (C-RANs) and HetNets. Characterizing the cooperative beamforming with fronthaul capacity and queue stability constraints is critical for multimedia applications to improving energy efficiency (EE) in H-CRANs. An energy-efficient optimization objective function with individual fronthaul capacity and inter-tier interference constraints is presented in this paper for queue-aware multimedia H-CRANs. To solve this non-convex objective function, a stochastic optimization problem is reformulated by introducing the general Lyapunov optimization framework. Under the Lyapunov framework, this optimization problem is equivalent to an optimal network-wide cooperative beamformer design algorithm with instantaneous power, average power and inter-tier interference constraints, which can be regarded as the weighted sum EE maximization problem and solved by a generalized weighted minimum mean square error approach. The mathematical analysis and simulation results demonstrate that a tradeoff between EE and queuing delay can be achieved, and this tradeoff strictly depends on the fronthaul constraint

    Energy Efficient Resource Allocation Optimization in Fog Radio Access Networks with Outdated Channel Knowledge

    Full text link
    Fog Radio Access Networks (F-RAN) are gaining worldwide interests for enabling mobile edge computing for Beyond 5G. However, to realize the future real-time and delay-sensitive applications, F-RAN tailored radio resource allocation and interference management become necessary. This work investigates user association and beamforming issues for providing energy efficient F-RANs. We formulate the energy efficiency maximization problem, where the F-RAN specific constraint to guarantee local edge processing is explicitly considered. To solve this intricate problem, we design an algorithm based on the Augmented Lagrangian (AL) method. Then, to alleviate the computational complexity, a heuristic low-complexity strategy is developed, where the tasks are split in two parts: one solving for user association and Fog Access Points (F-AP) activation in a centralized manner at the cloud, based on global but outdated user Channel State Information (CSI) to account for fronthaul delays, and the second solving for beamforming in a distributed manner at each active F-AP based on perfect but local CSIs. Simulation results show that the proposed heuristic method achieves an appreciable performance level as compared to the AL-based method, while largely outperforming the energy efficiency of the baseline F-RAN scheme and limiting the sum-rate degradation compared to the optimized sum-rate maximization algorithm

    Dynamic network slicing for multitenant heterogeneous cloud radio access networks

    Get PDF
    Multitenant cellular network slicing has been gaining huge interest recently. However, it is not well-explored under the heterogeneous cloud radio access network (H-CRAN) architecture. This paper proposes a dynamic network slicing scheme for multitenant H-CRANs, which takes into account tenants' priority, baseband resources, fronthaul and backhaul capacities, quality of service (QoS) and interference. The framework of the network slicing scheme consists of an upper-level, which manages admission control, user association and baseband resource allocation; and a lower-level, which performs radio resource allocation among users. Simulation results show that the proposed scheme can achieve a higher network throughput, fairness and QoS performance compared to several baseline schemes

    Intelligent Advancements in Location Management and C-RAN Power-Aware Resource Allocation

    Get PDF
    The evolving of cellular networks within the last decade continues to focus on delivering a robust and reliable means to cope with the increasing number of users and demanded capacity. Recent advancements of cellular networks such as Long-Term Evolution (LTE) and LTE-advanced offer a remarkable high bandwidth connectivity delivered to the users. Signalling overhead is one of the vital issues that impact the cellular behavior. Causing a significant load in the core network hence effecting the cellular network reliability. Moreover, the signaling overhead decreases the Quality of Experience (QoE) of users. The first topic of the thesis attempts to reduce the signaling overhead by developing intelligent location management techniques that minimize paging and Tracking Area Update (TAU) signals. Consequently, the corresponding optimization problems are formulated. Furthermore, several techniques and heuristic algorithms are implemented to solve the formulated problems. Additionally, network scalability has become a challenging aspect that has been hindered by the current network architecture. As a result, Cloud Radio Access Networks (C-RANs) have been introduced as a new trend in wireless technologies to address this challenge. C-RAN architecture consists of: Remote Radio Head (RRH), Baseband Unit (BBU), and the optical network connecting them. However, RRH-to-BBU resource allocation can cause a significant downgrade in efficiency, particularly the allocation of the computational resources in the BBU pool to densely deployed small cells. This causes a vast increase in the power consumption and wasteful resources. Therefore, the second topic of the thesis discusses C-RAN infrastructure, particularly where a pool of BBUs are gathered to process the computational resources. We argue that there is a need of optimizing the processing capacity in order to minimize the power consumption and increase the overall system efficiency. Consequently, the optimal allocation of computational resources between the RRHs and BBUs is modeled. Furthermore, in order to get an optimal RRH-to-BBU allocation, it is essential to have an optimal physical resource allocation for users to determine the required computational resources. For this purpose, an optimization problem that models the assignment of resources at these two levels (from physical resources to users and from RRHs to BBUs) is formulated
    • …
    corecore